

Data Sheet AMM-3742-2-T

Features:

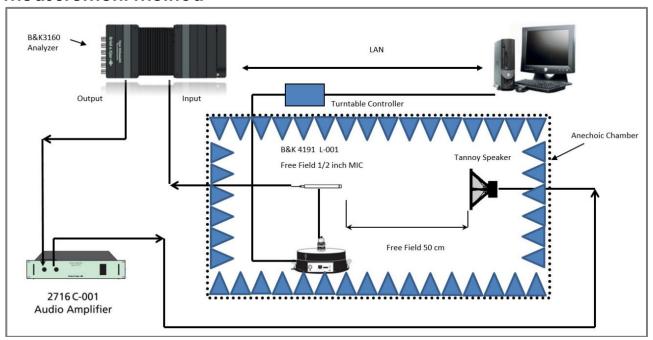
The AMM-3742-2-T analog MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly.

- -42dB sensitivity
- 65dB Signal-to-Noise
- Analog output
- Small 3.76mm x 2.95mm surface-mount package

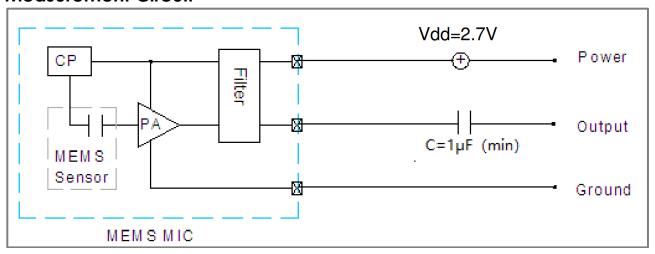
Specifications ($V_{DD} = 2.7V$, $T_A = 23\pm2^{\circ}C$, RH = $55\pm10\%$, unless otherwise specified.)

Parameter	Test Condition	Value	Unit
Sensitivity	94dBSPL f _{IN} = 1 kHz	-43 (min) -42 (typ) -41 (max)	dB
Supply Voltage		2.0 (typ)	V_{DD}
Supply Voltage Range		1.6 (min) 2.0 (typ) 3.6 (max)	V_{DD}
Output Impedance (@ 1 kHz)		300 (typ)	Ω
Supply Current	$1.6V \le V_{DD} \le 3.6V$	200 (max)	μΑ
Signal-to-Noise Ratio	f _{IN} = 1kHz 94dBSPL A-weighted	59 (typ)	dB
Frequency Range	See Frequency Response Curve for response limits	100 – 20k	Hz
Total Harmonic Distortion	$f_{IN} = 1 \text{ kHz}$ 94dBSPL	0.5 (max)	%
Acoustic Overload Point (AOP)	(f _{TEST} = 1kHz, 10% THD)	132 (typ)	dB
Power Supply Rejection	100mV_{PP} 217 Hz square wave on V_{DD} , A-weighted	-100 (typ)	dB

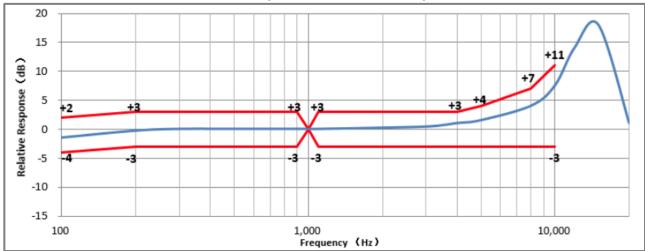
Physical Properties

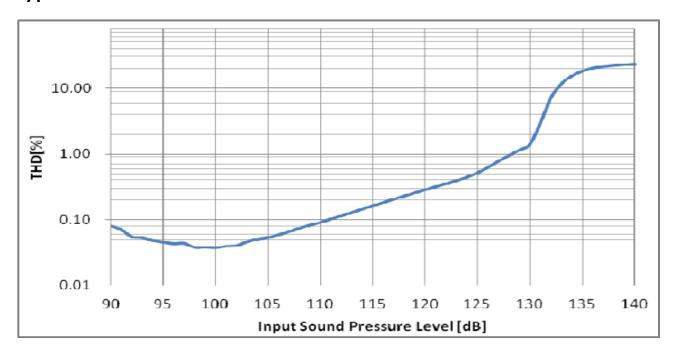

Parameter	Condition	Value	Unit
Directivity		Omnidirectional	
Weight		0.1 (max) Grams	
Operating Temperature		-40 (min) 85 (max)	°C
Storage Temperature		-40 (min) 100 (max)	°C
MSL (Moisture Sensitivity Level)*		Class 1	
Acceptable Soldering Methods		See below for reflow soldering information	
Environmental Compliances		RoHS/Halogen Free	

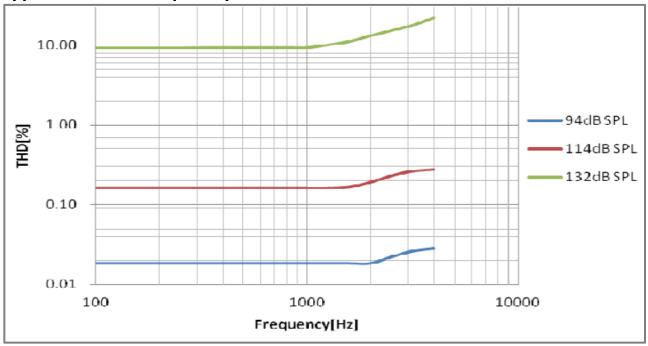
^{*}MSL level dependent on product remaining in sealed packaging until use

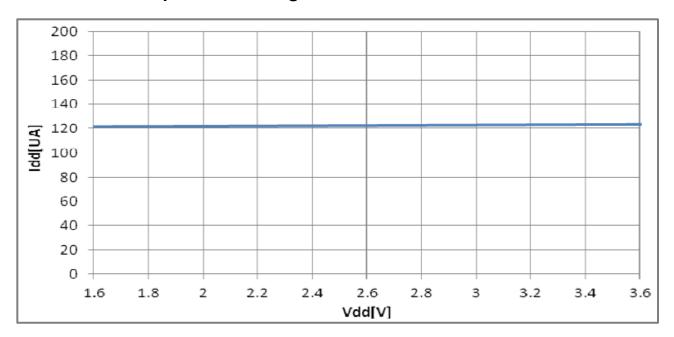

Absolute Maximum Ratings

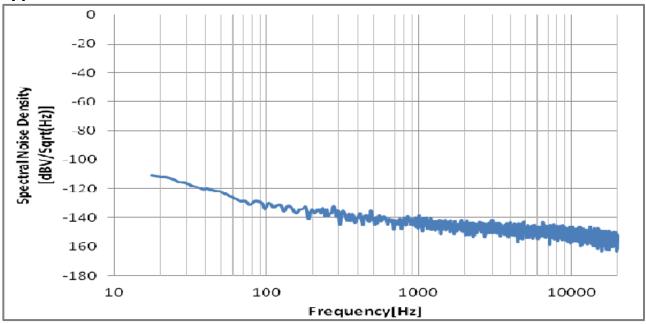
Parameter	Condition	Value	Unit
Supply Voltage		4.2	V_{DC}
Voltage on any Pin		-0.3 (min) V _{DD} + 0.3 (max)	V_{DC}
Max Sound Pressure Level		160	dB
Max Mechanical Shock		10000 G	
Max Vibration		Pre-MIL-STD-883 Method 2007, Test Condition B	

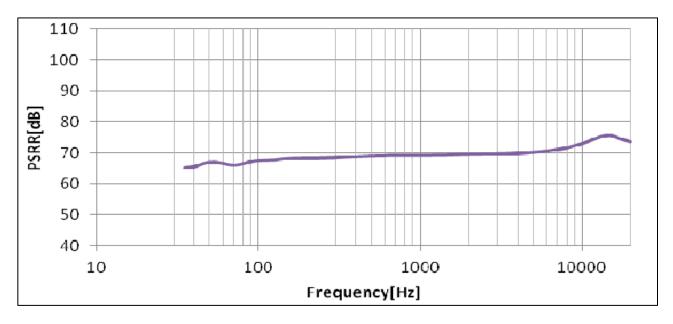

Measurement Method

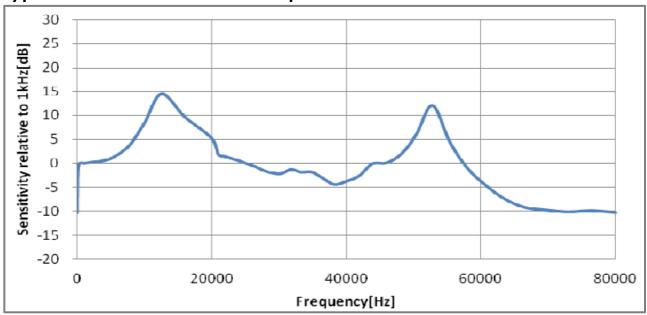

Measurement Circuit


Typical Frequency Response (Normalized to OdB at 1kHz)

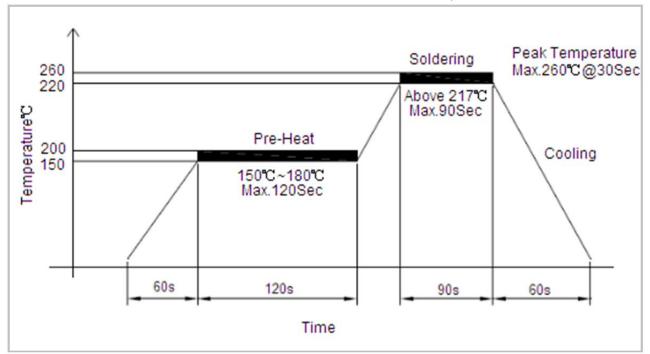

Typical THD Vs SPL


Typical THD Vs Frequency


Current Consumption Vs Voltage


Typical Noise Floor

Typical PSRR Vs Frequency

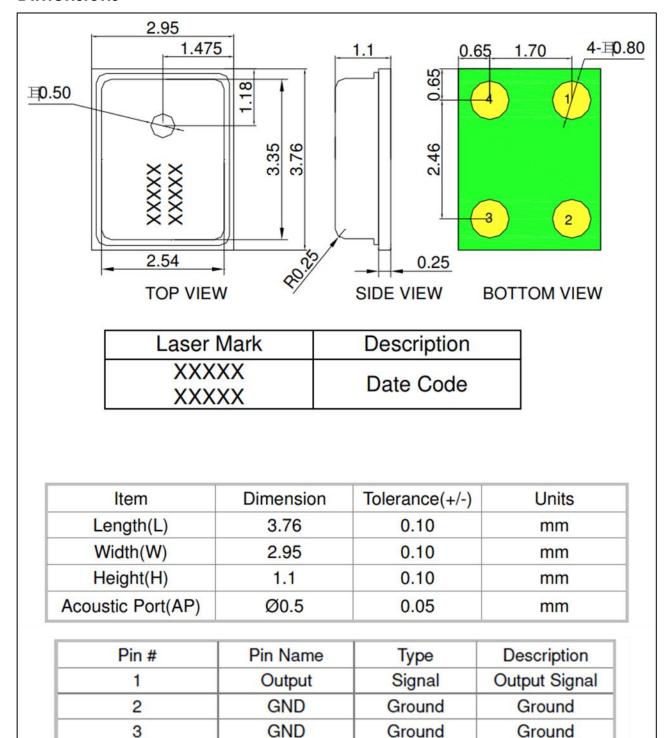


Typical Free Field Ultrasonic Response

Recommended Reflow Soldering Procedure (Recommended profile,

temperature ≤ 260°C, 30s maximum at peak temperature)

Important notes to minimize device damage


- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- 5. Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A noclean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. it is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.

Reliability Testing (Samples under test are acclimated at $T_A = 23\pm2^{\circ}$ C, R.H. = 55 $\pm10\%$ for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is $\leq\pm3$ dB, unless otherwise specified)

Type of Test	Test Specifications	
High Temperature Storage Test	1000hrs at 105±3°C	
Thight femperature storage resi	Two-hour recovery	
High Temperature Operational Test	1000hrs at 105±3°C	
	$V_{DD} = V_{DD}$ (max)	
1031	Four-hour recovery	
Low Temperature Storage Test	1000hrs at -40±3°C	
2011 10111 2010 1010 2010 2010	Two-hour recovery	
Low Temperature Operational	1000hrs at -40±3°C	
Test	$V_{DD} = V_{DD}$ (max)	
	Four-hour recovery	
Temperature Shock	Thirty cycles, each from cold to hot	
	Each cycle is thirty minutes at -40°C, thirty minutes at 125°C	
	Five-minute transition	
I limb I limbility and all the I limb Towns a week was	1000hrs at 85±3°C and 85%RH	
High Humidity, High Temperature	$V_{DD} = V_{DD}$ (max)	
Operating Test	Twelve-hour recovery	
	No corrosion or defamation inside the microphone	
Lligh Humidity High Tapan aretura	168hrs at 65±3°C and 95%RH	
High Humidity, High Temperature	$V_{DD} = V_{DD}$ (max)	
Operating Test	Twelve-hour recovery	
	No corrosion or defamation inside the microphone One hour at 25°C precondition	
Static Humidity	1000hrs at 85±3°C and 85%RH	
Static Horriany	Dry at room ambient temperature	
	Double-case method:	
	30min at -40±3°C	
Temperature-Cycle Testing	Followed by	
Temperatore-cycle resting	30min at 125±3°C	
	30 cycles, two-hour recovery	
	Twelve minutes along the x, y, and z axis	
	$f_{IN} = 20$ Hz to 2kHz	
Vibration Test	20G peak acceleration	
	Two-hour recovery	
	Less than 1dB sensitivity change	
	Height: 1.5m	
	Fixture weight: 150±10g	
Shock Test	Fixture's sound hole diameter is ≥0.8mm	
	Reference surface is marble floor	
	Duration: four corners x four times; six faces x four times	
	Less than 1dB sensitivity change	
	Samples are qualified with three 260±5°C reflow profile	
Simulated Reflow (without solder)	passes	
Similared Keriow (will look solder)	Two hours of settling is required between each reflow	
	profile test	

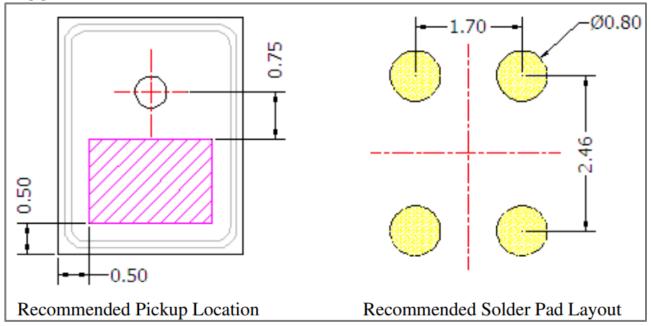
	Measured according to MIL-STD-883G, Method 3015.7,	
ESD Sensitivity	Human Body Model (HBM)	
	Identify ESD threshold levels indicating 3000V HBM passage.	
	Random vibrations on three perpendicular axis	
Random Vibrations	Four cycles, 20Hz to 2kHz	
	20G peak acceleration	
	Thirty minutes per axis	
	Half-sine shock pulses	
Mechanical Shock	3000G±15%, 300µs	
	Eighteen total shocks	
Operational Life	Samples tested at 125°C for 168hrs at V _{DD(MAX)}	
	Repeated three times in six directions (total drops is	
	eighteen).	
Drop Test	Dropped onto a steel surface from 1.5m height	
	Inspect for mechanical damage	
	Less than ±3dB sensitivity variation after each drop	

Dimensions

Notes:

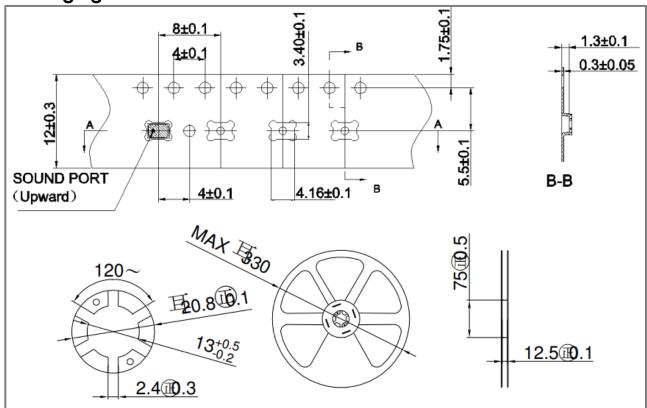
All dimensions are in millimeter (mm).

4

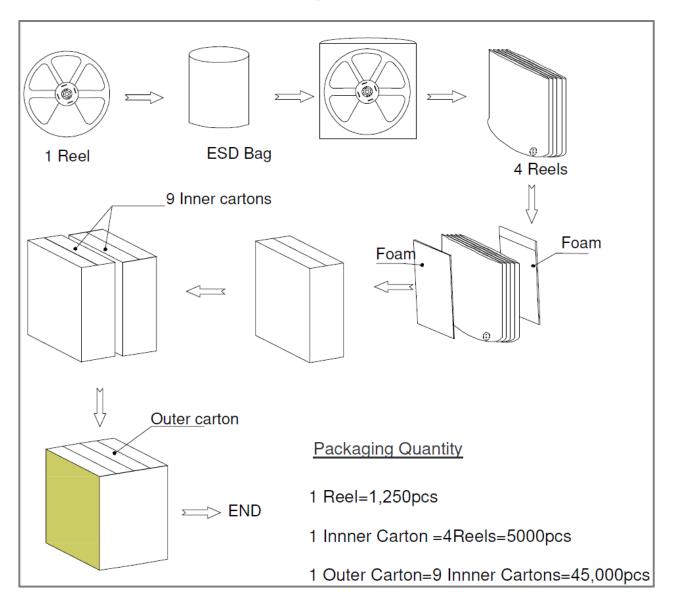

Tolerance±0.15mm unless otherwise specified.

Power

Power Supply


VDD

Suggested Land Pattern*



^{*}This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

Packaging

All Dimensions are in millimeter (mm).

Specifications Revisions

Revision	Description	Date	Approved
Α	Released from Engineering	05/05/2023	-
В	Added Pin Descriptions	04/30/2024	M.L.

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS/REACH compliant.