

Data Sheet

AMM-3538-2-B

Features:

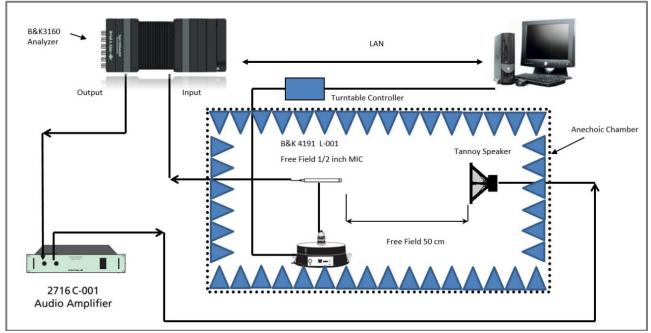
The AMM-3538-2-B analog MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly.

- -38dB sensitivity
- 66dB Signal-to-Noise
- Analog output
- Small 3.5mm x 2.65mm surface-mount package

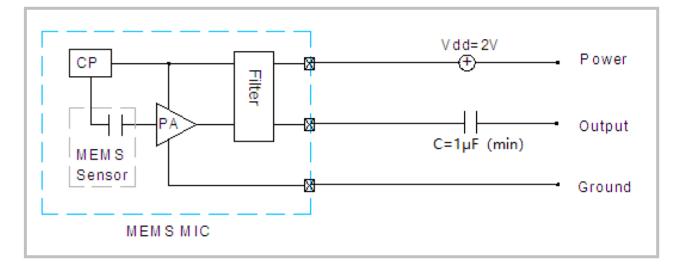
Parameter	Test Condition	Value	Unit
Sensitivity	f _{IN} = 1 kHz 94dBSPL	-39 (min) -38 (typ) -37 (max)	dB
Supply Voltage		2.0 (typ)	V _{DD}
Supply Voltage Range		1.6 (min) 3.6 (max)	V_{DD}
Output Impedance	f _{IN} = 1kHz	300 (max)	Ω
Supply Current	$1.6V \le V_{DD} \le 3.6V$	200 (max)	μA
Signal-to-Noise Ratio	$f_{IN} = 1 kHz$ 94dBSPL A-weighted	66 (typ)	dB
Frequency Range	See Frequency Response Curve for response limits		Hz
Total Harmonic Distortion	c Distortion $ \begin{cases} f_{IN} = 1 \text{ kHz} \\ 94\text{dBSPL} \end{cases} $		%
Acoustic Overload Point (AOP)	f _{IN} = 1kHz 10% THD	124 (typ)	dB
Power Supply Rejection	100mV $_{\text{PP}}$ 217 Hz square wave on V $_{\text{DD}}$ A-weighted	-100 (typ)	dB

Specifications ($V_{DD} = 2.7V$, $T_A = 23\pm 2^{\circ}C$, RH = 55±10%, unless otherwise specified.)

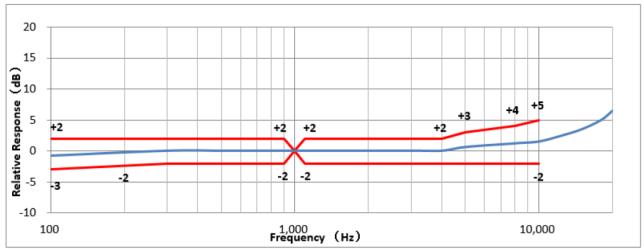
Physical Properties

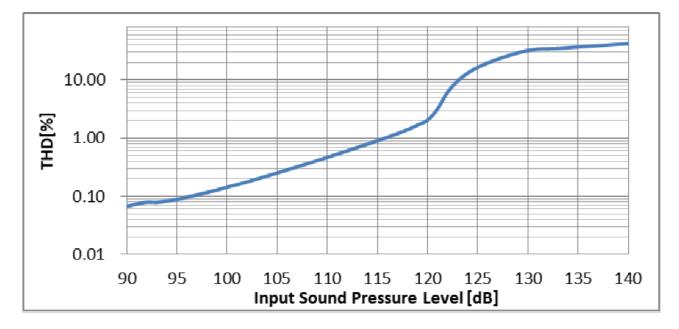

Parameter	Condition	Value	Unit
Directivity		Omnidirecti	onal
Weight		0.3 (max)	Grams
Operating Temperature		-40 (min) 85 (max)	°C
Storage Temperature		-40 (min) 100 (max)	°C
MSL (Moisture Sensitivity Level)*		Class 1	
Acceptable Soldering Methods		See below for reflow soldering information	
Environmental Compliances		RoHS/Halogen Free	

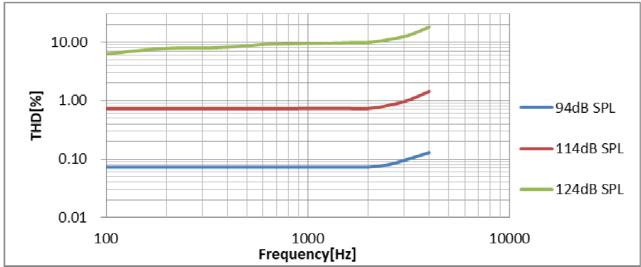
*MSL level dependent on product remaining in sealed packaging until use

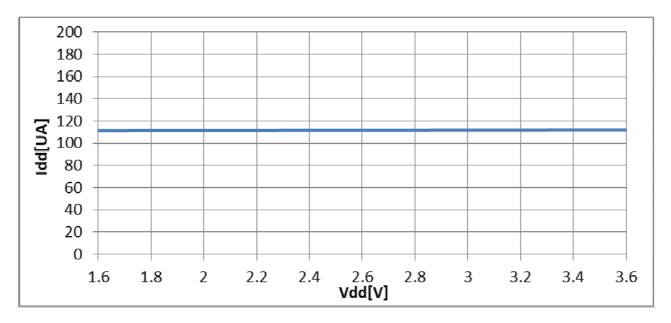

Absolute Maximum Ratings

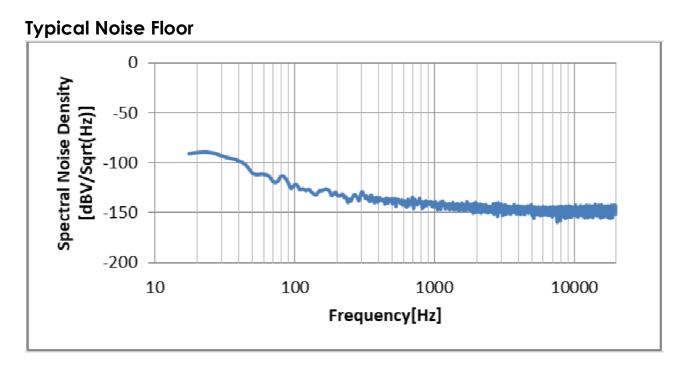
Parameter	Condition	Value	Unit		
Supply Voltage		3.6 (max)	V _{DC}		
		-0.3 (min)			
Voltage on any Pin		V _{DD} + 0.3	V		
		(max)			
Sound Pressure Level		160	dB		
Mechanical Shock		10000	G		
Vibration		Pre-MIL-STD-88	Pre-MIL-STD-883 Method 2007, Test Condition B		
VIDICIION		2007, Test Co			


Measurement Method

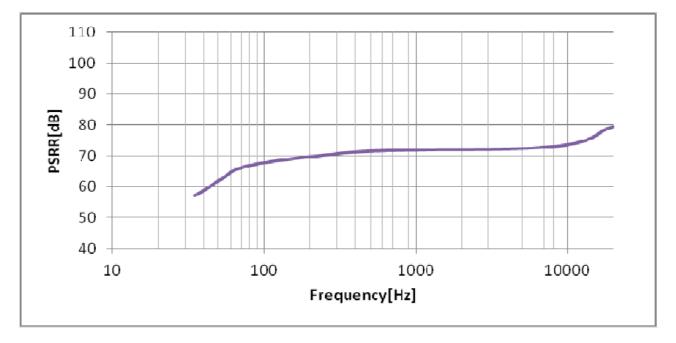

Measurement Circuit

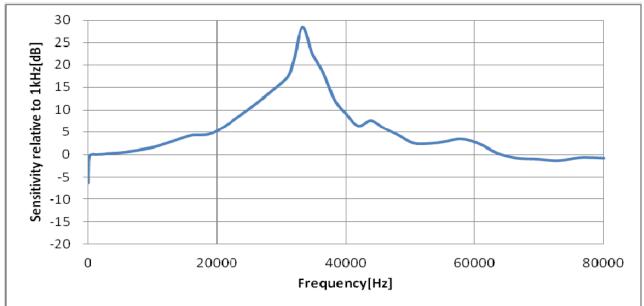



Typical THD Vs SPL

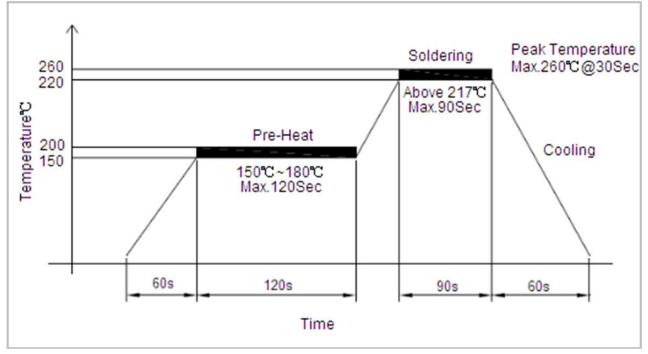


Typical THD Vs Frequency




Current Consumption Vs Voltage

Typical PSRR Vs Frequency

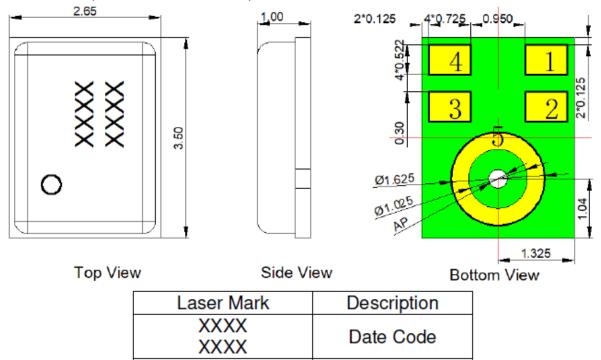


Typical Free Field Ultrasonic Response

Recommended Reflow Soldering Procedure (Recommended profile,

temperature ≤ 260°C, 30s maximum at peak temperature)

Important notes to minimize device damage


- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A no-clean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. it is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.

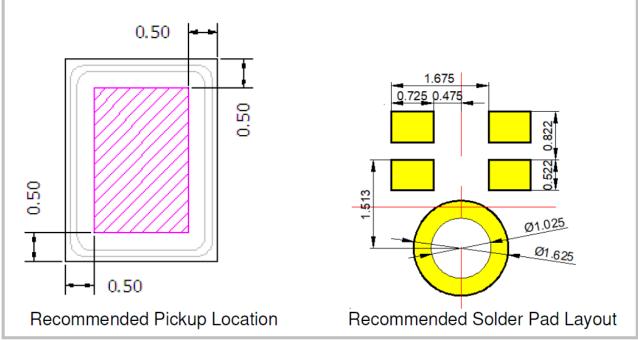
Reliability Testing (Samples under test are acclimated at $T_A = 23\pm2^{\circ}$ C, R.H. = 55±10% for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is $\leq \pm 3$ dB, unless otherwise specified.)

$\frac{1}{1}$		
High Temperature Storage	1000hrs at 105±3°C	
Test	Two-hour recovery	
	1000hrs at 105±3°C	
High Temperature	$V_{DD} = V_{DD} (max)$	
Operational Test	Four-hour recovery	
Low Temperature Storage	1000hrs at -40±3°C	
Test	Two-hour recovery	
Low Tomporature	1000hrs at -40±3°C	
Low Temperature	$V_{DD} = V_{DD}$ (max)	
Operational Test	Four-hour recovery	
Llich Llumidity Llich	1000hrs at 85±3°C and 85%RH	
High Humidity, High	$V_{DD} = V_{DD}$ (max)	
Temperature Operating Test	Twelve-hour recovery	
Test	No corrosion or defamation inside the microphone	
Llich Llumidity Llich	168hrs at 65±3°C and 95%RH	
High Humidity, High Temperature Operating	$V_{DD} = V_{DD}$ (max)	
Test	Twelve-hour recovery	
Test	No corrosion or defamation inside the microphone	
	Double-case method:	
Temperature-Cycle	15min at -40±3°C	
Testing	Followed by	
resing	15min at 125±3°C	
	100 cycles, two-hour recovery	
	Twelve minutes along the x, y, and z axis	
	$f_{IN} = 20Hz$ to 2kHz	
Vibration Test	20G peak acceleration	
	Two-hour recovery	
	Less than 1dB sensitivity change	
	Height: 1.5m	
	Fixture weight: 150±10g	
Shock Test	Fixture's sound hole diameter is ≥0.8mm	
	Reference surface is marble floor	
	Duration: four corners x four times; six faces x four times	
	Less than 1dB sensitivity change	
	Height: 1.0m	
Tumble Test	Fixture weight: 150±10g	
	Fixture's sound hole diameter is ≥0.8mm	
	Duration: 300 cycles	
	Less than 1dB sensitivity change	
	Measured according to MIL-STD-883G, Method 3015.7, Human	
ESD Sensitivity	Body Model (HBM)	
	Identify ESD threshold levels indicating 3000V HBM passage.	

Air Pressure Test	Air pressure = 0.3MPa Distance = 3cm Time = 10sec Air discharge port diameter exceeds microphone's acoustic port diameter
Structure Shock Test	10000G Pulse width = 0.1ms X, Y, and Z axis Three times along each axis Sensitivity changes less than 1dB

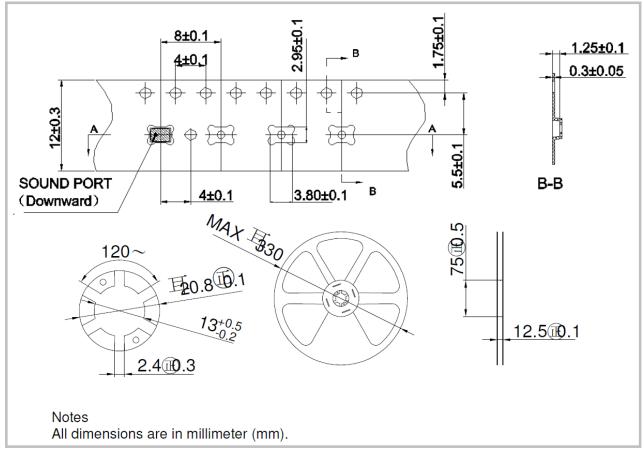
Dimensions (Dimension are in mm.)

ltem	Dimension	Tolerance(+/-)	Units
Length(L)	3.50	0.10	mm
Width(W)	2.65	0.10	mm
Height(H)	1.00	0.10	mm
Acoustic Port(AP)	Ø0.325	0.05	mm

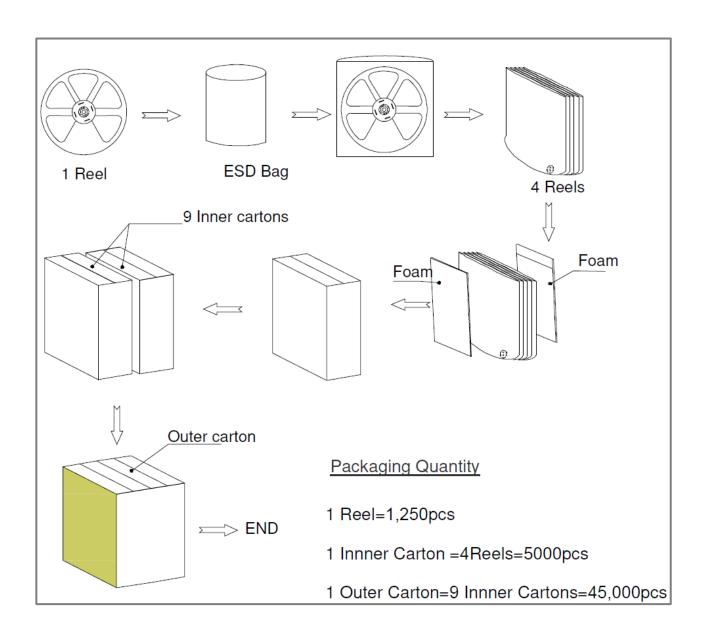

Pin #	Pin Name	Туре	Description
1	Output	Signal	Output Signal
2	GND	Ground	Ground
3	GND	Ground	Ground
4	V _{DD}	Power	Power Supply
5	GND	Ground	Ground

Notes:

All dimensions are in millimeters (mm).


Tolerance±0.15mm unless otherwise specified.

Suggested Land Pattern*



*This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

Packaging

All Dimensions are in millimeter (mm).

Specifications Revisions			
Revision	Description	Date	
А	Released from Engineering	05-9-2023	

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS 2015/863/EU compliant.