



Data Sheet AMM-2738-2-B

#### **Features:**

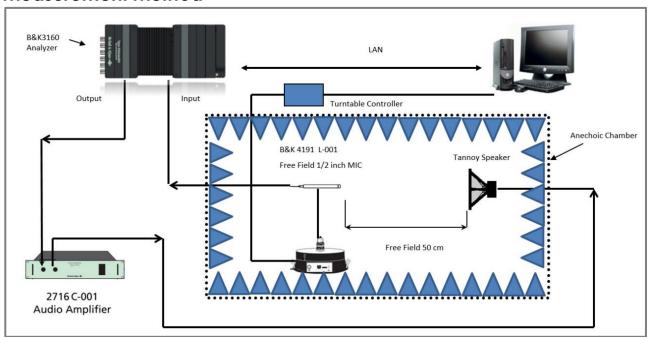
The AMM-2738-2-B analog MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly.

- -38dB sensitivity
- 65dB Signal-to-Noise
- Analog output
- Small 2.75mm x 1.85mm surface-mount package
- Anti-RF interference

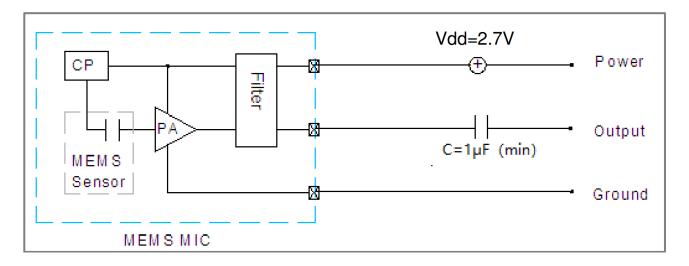
**Specifications** ( $V_{DD} = 2.7V$ ,  $T_A = 23\pm2^{\circ}C$ , RH =  $55\pm10\%$ , unless otherwise specified.)

| Parameter                        | Test Condition                                                          | Value                               | Unit             |
|----------------------------------|-------------------------------------------------------------------------|-------------------------------------|------------------|
| Sensitivity                      | 94dBSPL<br>f <sub>IN</sub> = 1 kHz                                      | -39 (min)<br>-38 (typ)<br>-37 (max) | dB               |
| Supply Voltage                   |                                                                         | 2.7 (typ)                           | $V_{DD}$         |
| Supply Voltage Range             |                                                                         | 2.4 (min)<br>2.7 (typ)<br>3.3 (max) | $V_{	extsf{DD}}$ |
| Output Impedance                 | $f_{TEST} = kHz$                                                        | 300 (max)                           | Ω                |
| Supply Current                   | $2.4V \le V_{DD} \le 3.0V$                                              | 150 (max)                           | μΑ               |
| Signal-to-Noise Ratio            | f <sub>IN</sub> = 1kHz<br>94dBSPL<br>A-weighted                         | 64 (min)<br>65 (typ)                | dB               |
| Frequency Range                  | See Frequency Response Curve for response limits                        | 20 – 20k<br>(typ)                   | Hz               |
| Total Harmonic<br>Distortion     | $f_{IN} = 1 \text{ kHz}$<br>94dBSPL                                     | 0.5 (max)                           | %                |
| Acoustic Overload<br>Point (AOP) | $f_{TEST} = 1 \text{kHz}$ 10% THD                                       | 130 (typ)<br>131 (max)              | dB               |
| Power Supply Rejection           | 100mV <sub>PP</sub> 217 Hz square wave on V <sub>DD</sub><br>A-weighted | -100 (typ)<br>-97 (min)             | dB               |
| Phase Response                   | 94dBSPL<br>50Hz < fIN < 2000Hz                                          | -5 (min)<br>5 (max)                 | 0                |

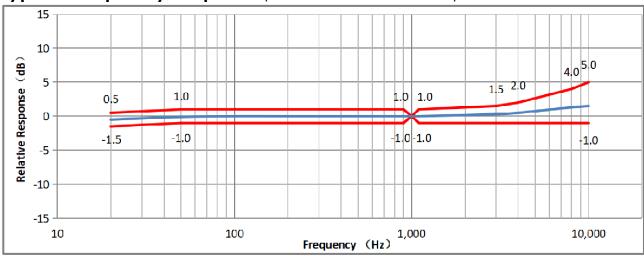
**Physical Properties** 


| Parameter                         | Condition | Value                                                | Unit |  |
|-----------------------------------|-----------|------------------------------------------------------|------|--|
| Directivity                       |           | Omnidirectional                                      |      |  |
| Weight                            |           | 0.1 (max) Grams                                      |      |  |
| Operating Temperature             |           | -40 (min)<br>85 (max)                                | °C   |  |
| Storage Temperature               |           | -40 (min)<br>100 (max)                               | °C   |  |
| MSL (Moisture Sensitivity Level)* |           | Class 1                                              |      |  |
| Acceptable Soldering<br>Methods   |           | See page 4 for<br>reflow<br>soldering<br>information |      |  |
| Environmental Compliances         |           | RoHS/Halogen<br>Free                                 |      |  |

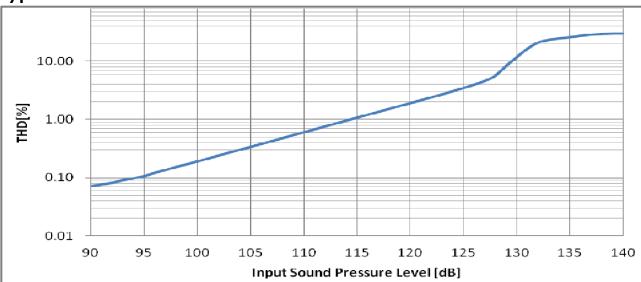
<sup>\*</sup>MSL level dependent on product remaining in sealed packaging until use


**Absolute Maximum Ratings** 

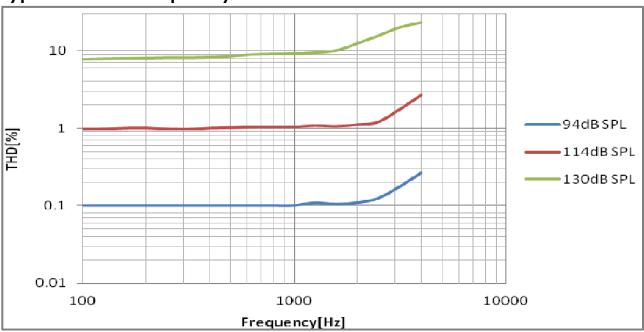
| Absolute Maximom Kamigs  |           |               |                                                  |  |
|--------------------------|-----------|---------------|--------------------------------------------------|--|
| Parameter                | Condition | Value         | Unit                                             |  |
| Max Voltage on Any Pin   |           | 3.6           | $V_{DC}$                                         |  |
| Max Sound Pressure Level |           | 160           | dB                                               |  |
| Max Mechanical Shock     |           | 10000         | G                                                |  |
| Max Vibration            |           | Pre-MIL-STD-8 | Pre-MIL-STD-883 Method<br>2007, Test Condition B |  |
|                          |           | 2007, Test C  |                                                  |  |


### **Measurement Method**

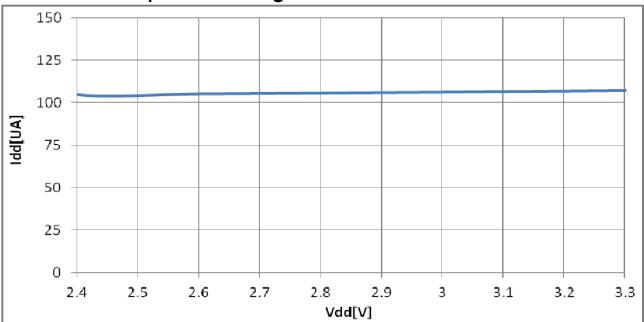



### **Measurement Circuit**

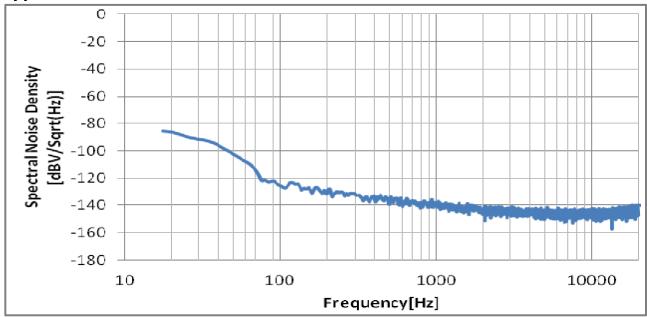



# Typical Frequency Response (Normalized to 0dB at 1kHz)

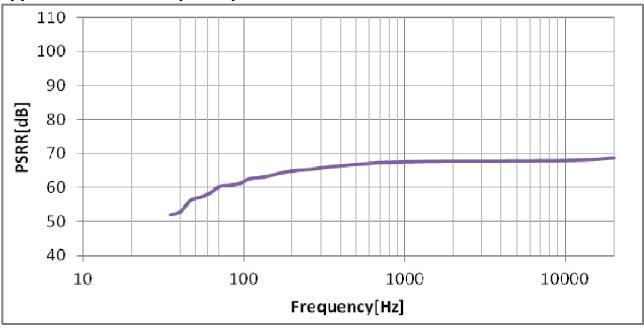



# Typical THD Vs SPL

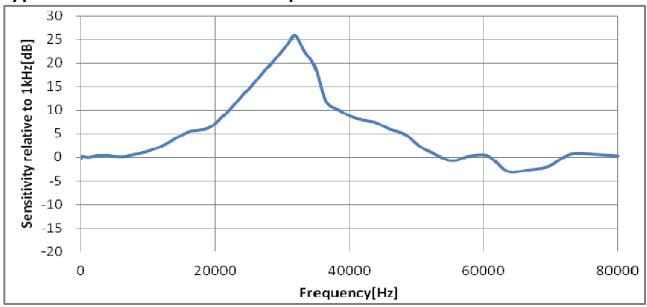



Typical THD Vs Frequency

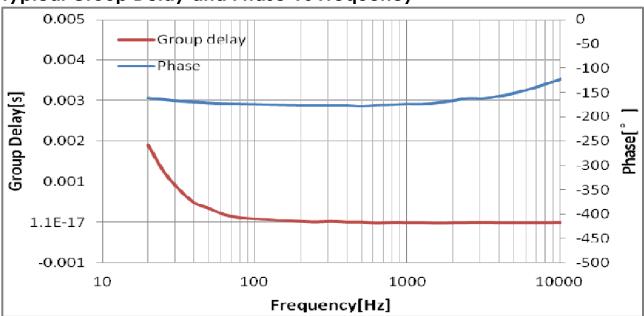



# **Current Consumption Vs Voltage**



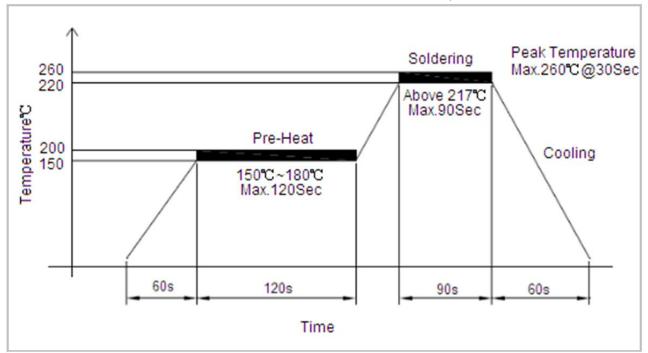

# **Typical Noise Floor**




# Typical PSRR Vs Frequency



## Typical Free Field Ultrasonic Response




### Typical Group Delay and Phase Vs Frequency



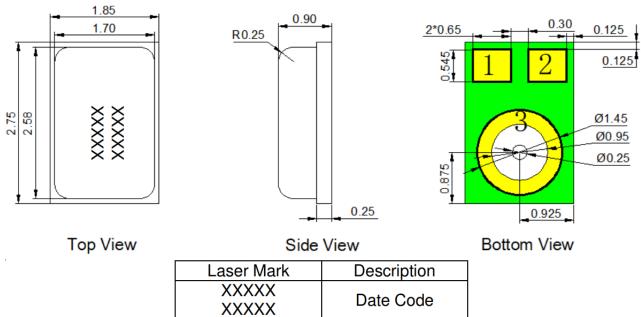
### Recommended Reflow Soldering Procedure (Recommended profile,

temperature ≤ 260°C, 30s maximum at peak temperature)



Important notes to minimize device damage

- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- 5. Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A noclean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. it is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.


**Reliability Testing** (Samples under test are acclimated at  $T_A = 23\pm2^{\circ}$ C, R.H. =  $5\pm10\%$  for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is  $\leq \pm3$ dB, unless otherwise specified.)

| Type of Test                     | Test Specifications                                            |
|----------------------------------|----------------------------------------------------------------|
| High Temperature Storage         | 1000hrs at 105±3°C                                             |
| Test                             | Two-hour recovery                                              |
| Lligh Tapan aretura              | 1000hrs at 105±3°C                                             |
| High Temperature                 | $V_{DD} = V_{DD}$ (max)                                        |
| Operational Test                 | Four-hour recovery                                             |
| Low Temperature Storage          | 1000hrs at -40±3°C                                             |
| Test                             | Two-hour recovery                                              |
| Low Tomporature                  | 1000hrs at -40±3°C                                             |
| Low Temperature Operational Test | $V_{DD} = V_{DD}$ (max)                                        |
| Operational rest                 | Four-hour recovery                                             |
|                                  | Thirty cycles, each from cold to hot                           |
| Temperature Shock                | Each cycle is thirty minutes at -40°C, thirty minutes at 125°C |
|                                  | Five-minute transition                                         |
|                                  | Double-case method:                                            |
|                                  | 15min at -40±3°C                                               |
| Temperature-Cycle,               | Followed by                                                    |
| Thermal Shock Test               | 15min at 125±3°C                                               |
|                                  | 100 cycles                                                     |
|                                  | Two-hour recovery                                              |
| High Humidity High               | 1000hrs at 85±3°C and 85%RH                                    |
| High Humidity, High              | $V_{DD} = V_{DD}$ (max)                                        |
| Temperature Operating Test       | Twelve-hour recovery                                           |
| 1631                             | No corrosion or defamation inside the microphone               |
| High Humidity, High              | 168hrs at 65±3°C and 95%RH                                     |
| Temperature Operating            | $V_{DD} = V_{DD}$ (max)                                        |
| Test                             | Twelve-hour recovery                                           |
| 1631                             | No corrosion or defamation inside the microphone               |
|                                  | Twelve minutes along the x, y, and z axis                      |
|                                  | $f_{IN} = 20$ Hz to 2kHz                                       |
| Vibration Test                   | 20G peak acceleration                                          |
|                                  | Two-hour recovery                                              |
|                                  | Less than 1dB sensitivity change                               |
|                                  | Height: 1.5m                                                   |
|                                  | Fixture weight: 150±10g                                        |
| Drop Test                        | Fixture's sound hole diameter is ≥0.8mm                        |
|                                  | Reference surface is marble floor                              |
|                                  | Duration: four corners x four times; six faces x four times    |
|                                  | Less than 1dB sensitivity change                               |
|                                  | Height: 1.0m                                                   |
|                                  | Fixture weight: 150±10g                                        |
| Tumble Test                      | Fixture's sound hole diameter is ≥0.8mm                        |
|                                  | Duration: 300 cycles                                           |
|                                  | Less than 1dB sensitivity change                               |

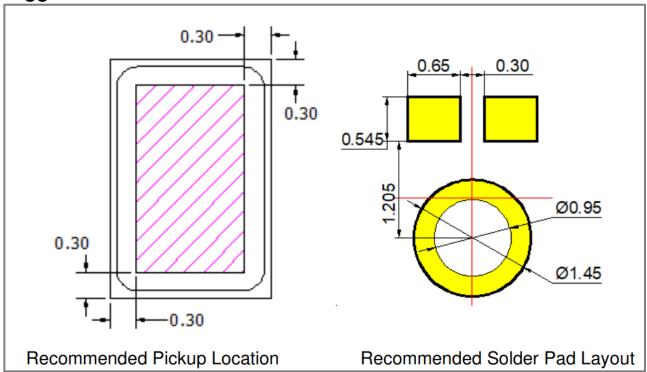
| Random Vibrations                 | Random vibrations on three perpendicular axis Four cycles, 20Hz to 2kHz 20G peak acceleration Thirty minutes per axis                 |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Structure Shock Test              | 10000G Pulse width = 0.1ms X, Y, and Z axis Three times along each axis Sensitivity changes less than 1dB                             |
| Air Pressure Test                 | Air pressure = 0.3MPa Distance = 3cm Time = 10sec Air discharge port diameter exceeds microphone's acoustic port diameter             |
| Simulated Reflow (without solder) | Samples are qualified with three 260±5°C reflow profile passes Two hours of settling is required between each reflow profile test     |
| ESD Sensitivity                   | Measured according to MIL-STD-883G, Method 3015.7, Human Body Model (HBM) Identify ESD threshold levels indicating 3000V HBM passage. |

©2021, PUI Audio Inc.

# **Dimensions** (Dimension in mm.)

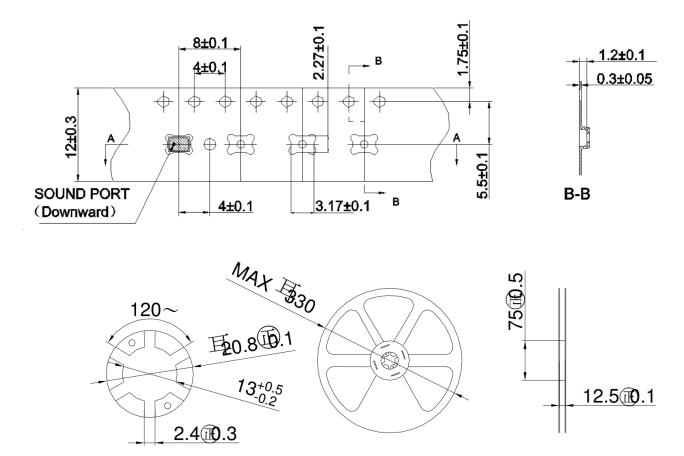


| Item              | Dimension | Tolerance(+/-) | Units |
|-------------------|-----------|----------------|-------|
| Length(L)         | 2.75      | 0.10           | mm    |
| Width(W)          | 1.85      | 0.10           | mm    |
| Height(H)         | 0.9       | 0.10           | mm    |
| Acoustic Port(AP) | Ø0.25     | 0.05           | mm    |


| Pin # | Pin Name | Type   | Description   |
|-------|----------|--------|---------------|
| 1     | $V_{DD}$ | Power  | Power Supply  |
| 2     | Output   | Signal | Output Signal |
| 3     | GND      | Ground | Ground        |

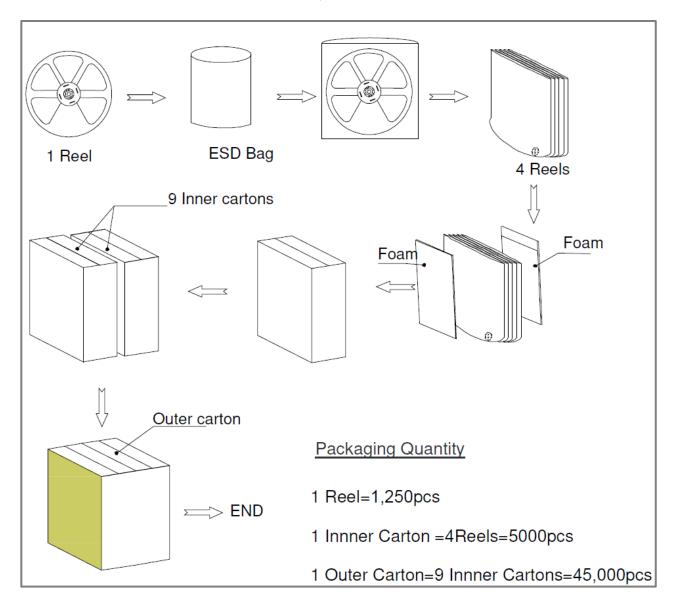
#### Notes:

All dimensions are in millimeters (mm).


Tolerance±0.15mm unless otherwise specified.

# **Suggested Land Pattern\***




<sup>\*</sup>This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

# **Packaging**



All Dimensions are in millimeter (mm).

©2021, PUI Audio Inc.



#### **Specifications Revisions**

| Revision | Description               | Date      |
|----------|---------------------------|-----------|
| Α        | Released from Engineering | 05-1-2023 |

#### Note:

- 1. Unless otherwise specified:
  - A. All dimensions are in millimeters.
  - B. Default tolerances are  $\pm 0.5$ mm and angles are  $\pm 3^{\circ}$ .
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS 2015/863/EU compliant.