



Data Sheet AMM-2738-3-B

### **Features:**

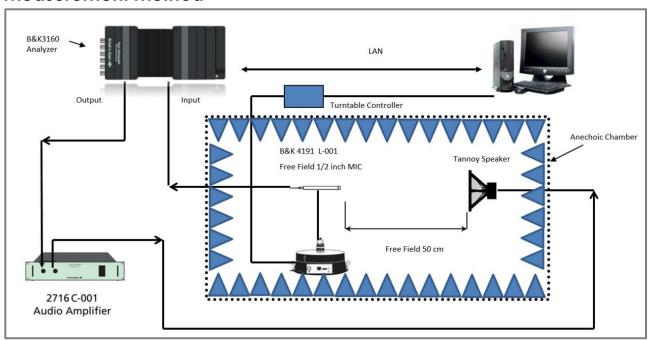
The AMM-2738-3-B analog MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly.

- -38dB sensitivity
- 63dB Signal-to-Noise
- Analog output
- Small 2.75mm x 1.85mm surface-mount package
- Anti-RF interference

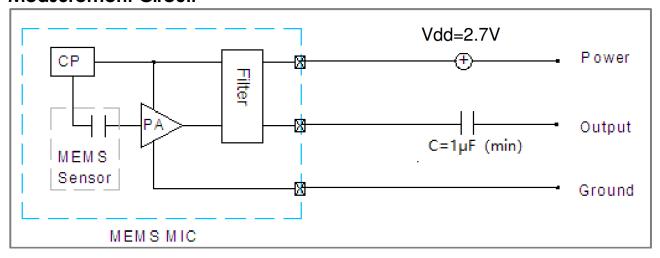
**Specifications** ( $V_{DD} = 2.7V$ ,  $T_A = 23\pm2^{\circ}C$ , RH =  $55\pm10\%$ , unless otherwise specified.)

| Parameter                       | Test Condition                                                         | Value                               | Unit     |
|---------------------------------|------------------------------------------------------------------------|-------------------------------------|----------|
| Sensitivity                     | 94dBSPL<br>f <sub>IN</sub> = 1 kHz                                     | -39 (min)<br>-38 (typ)<br>-37 (max) | dB       |
| Supply Voltage                  |                                                                        | 2.0 (typ)                           | $V_{DD}$ |
| Supply Voltage Range            |                                                                        | 1.6 (min)<br>3.6 (max)              | $V_{DD}$ |
| Output Impedance                | $f_{TEST} = 1 kHz$                                                     | 300 (max)                           | Ω        |
| Supply Current                  | $1.6V \le V_{DD} \le 3.6V$                                             | 200 (max)                           | μΑ       |
| Signal-to-Noise Ratio           | f <sub>IN</sub> = 1kHz<br>94dBSPL<br>A-weighted                        | 63 (typ)                            | dB       |
| Frequency Range                 | See Frequency Response Curve for response limits                       | 100 – 20k                           | Hz       |
| Total Harmonic Distortion       | $f_{IN} = 1 \text{ kHz}$<br>94dBSPL                                    | 0.1 (max)                           | %        |
| Acoustic Overload Point (AOP)   | (f <sub>TEST</sub> = 1kHz, 10% THD)                                    | 124 (typ)                           | dB       |
| Power Supply Rejection          | 100mV <sub>PP</sub> 217 Hz square wave on V <sub>DD</sub> , A-weighted | -100 (typ)                          | dB       |
| Power Supply Rejection<br>Ratio | 200mV <sub>PP</sub> 1kHz sinewave on V <sub>DD</sub> , A-weighted      | 70 (typ)                            | dB       |

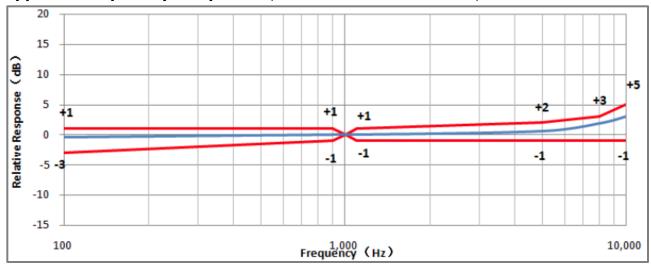
# **Physical Properties**


| Parameter                         | Condition | Value                                               | Unit  |
|-----------------------------------|-----------|-----------------------------------------------------|-------|
| Directivity                       |           | Omnidirectional                                     |       |
| Weight                            |           | 0.1 (max)                                           | Grams |
| Operating Temperature             |           | -40 (min)<br>85 (max)                               | °C    |
| Storage Temperature               |           | -40 (min)<br>100 (max)                              | °C    |
| MSL (Moisture Sensitivity Level)* |           | Class 1                                             |       |
| Acceptable Soldering<br>Methods   |           | See below for<br>reflow<br>soldering<br>information |       |
| Environmental Compliances         |           | RoHS/Halogen<br>Free                                |       |

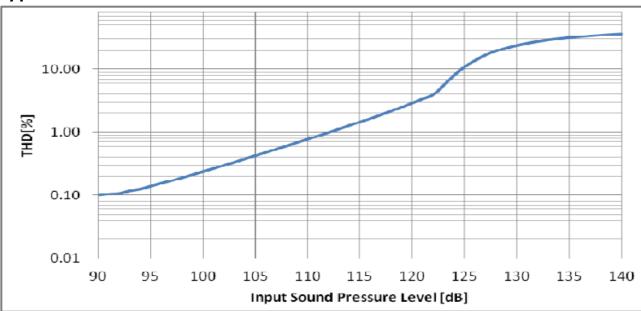
<sup>\*</sup>MSL level dependent on product remaining in sealed packaging until use


**Absolute Maximum Ratings** 

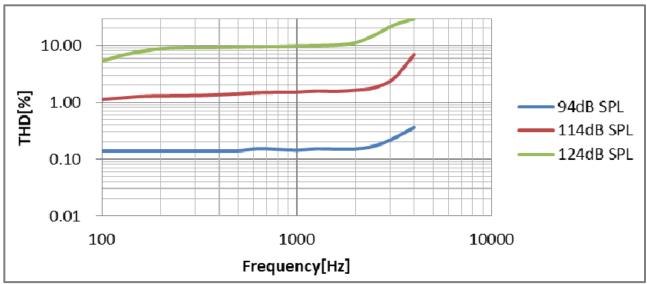
| Parameter                | Condition | Value          | Unit       |
|--------------------------|-----------|----------------|------------|
| Supply Voltage           |           | 3.6 (max)      | $V_{DC}$   |
| Voltago on any Pin       |           | -0.3 (min)     | V          |
| Voltage on any Pin       |           | $V_{DD} + 0.3$ | V          |
| Max Sound Pressure Level |           | 160            | dB         |
| Max Mechanical Shock     |           | 10000          | G          |
| Max Vibration            |           | Pre-MIL-STD-8  | 83 Method  |
| Max vibration            |           | 2007, Test C   | ondition B |


### **Measurement Method**

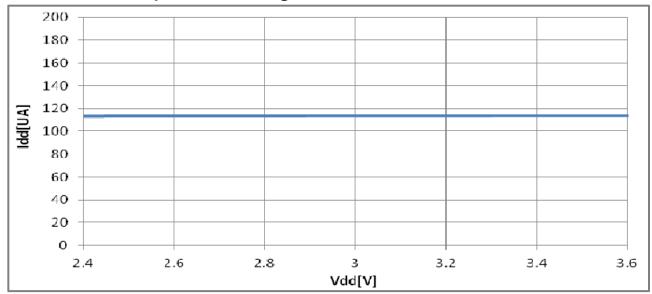



### **Measurement Circuit**

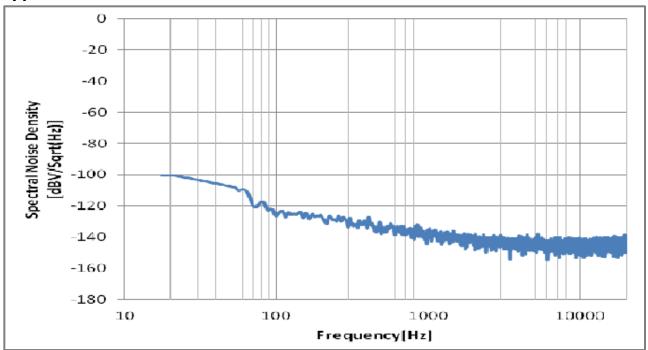



## Typical Frequency Response (Normalized to 0dB at 1kHz)

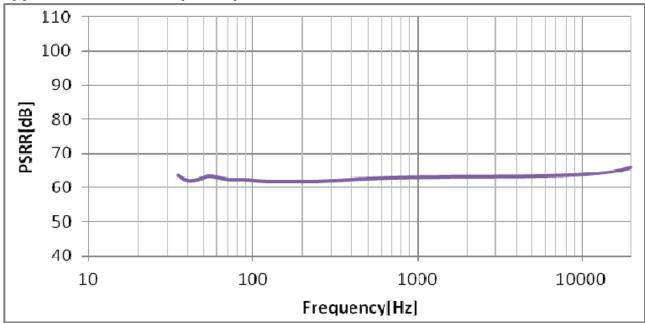



## Typical THD Vs SPL

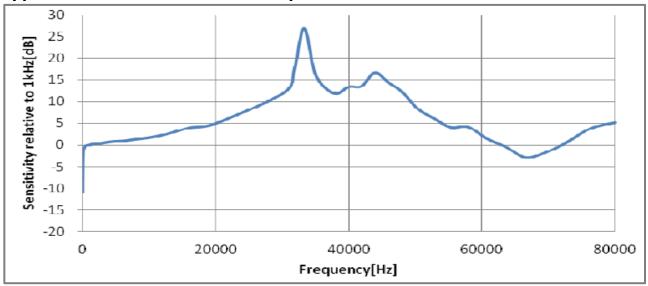



# Typical THD Vs Frequency



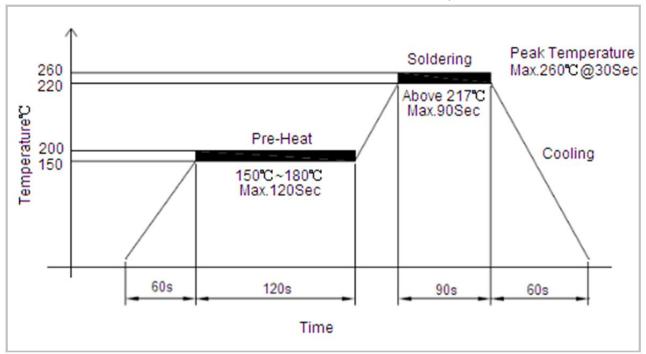

## **Current Consumption Vs Voltage**




## **Typical Noise Floor**



## Typical PSRR Vs Frequency




## Typical Free Field Ultrasonic Response

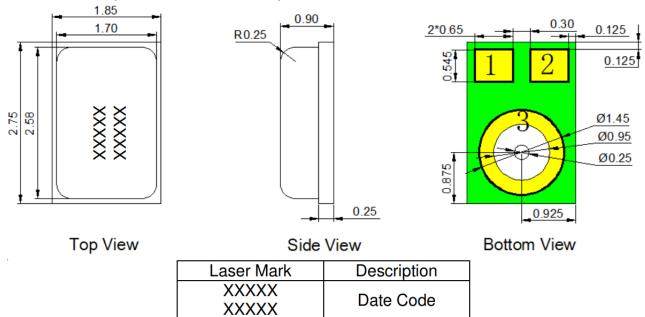


### Recommended Reflow Soldering Procedure (Recommended profile,

temperature ≤ 260°C, 30s maximum at peak temperature)



Important notes to minimize device damage:


- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- 5. Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A noclean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. it is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.

**Reliability Testing** (Samples under test are acclimated at  $T_A = 23\pm2^{\circ}$ C, R.H. =  $55\pm10\%$  for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is  $\leq\pm3$ dB, unless otherwise specified)

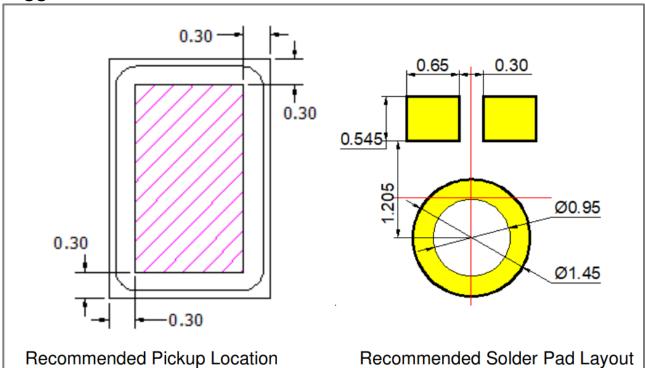
| Type of Test                   |                         |
|--------------------------------|-------------------------|
| High Temperature Storage Test  | 1000hrs at 105±3°C      |
| night temperature storage test | Two-hour recovery       |
| Lligh Tomporature Operational  | 1000hrs at 105±3°C      |
| High Temperature Operational   | $V_{DD} = V_{DD}$ (max) |
| Test                           | Four-hour recovery      |

|                                 | 1000hrs at -40±3°C                                          |
|---------------------------------|-------------------------------------------------------------|
| Low Temperature Storage Test    | Two-hour recovery                                           |
|                                 | 1000hrs at -40±3°C                                          |
| Low Temperature Operational     | $V_{DD} = V_{DD} \text{ (max)}$                             |
| Test                            | Four-hour recovery                                          |
|                                 | 1000hrs at 85±3°C and 85%RH                                 |
| High Humidity, High Temperature | $V_{DD} = V_{DD}$ (max)                                     |
| Operating Test                  | Twelve-hour recovery                                        |
| Operating resi                  | No corrosion or defamation inside the microphone            |
|                                 | 168hrs at 65±3°C and 95%RH                                  |
| High Humidity, High Temperature | $V_{DD} = V_{DD}$ (max)                                     |
| Operating Test                  | Twelve-hour recovery                                        |
| Operating resi                  | No corrosion or defamation inside the microphone            |
|                                 | Double-case method:                                         |
|                                 | 15min at -40±3°C                                            |
| Temperature-Cycle, Thermal      | Followed by                                                 |
| Shock Test                      | 15min at 125±3°C                                            |
|                                 | 100 cycles, two-hour recovery                               |
|                                 | Twelve minutes along the x, y, and z axis                   |
|                                 | If $I_{IN} = 20$ Hz to 2kHz                                 |
| <br>  Vibration Test            | 20G peak acceleration                                       |
| VIDIGITOTI TEST                 | Two-hour recovery                                           |
|                                 | Less than 1dB sensitivity change                            |
|                                 | Height: 1.5m                                                |
|                                 | Fixture weight: 150±10g                                     |
|                                 | Fixture's sound hole diameter is ≥0.8mm                     |
| Drop Test                       | Reference surface is marble floor                           |
|                                 | Duration: four corners x four times; six faces x four times |
|                                 | Less than 1dB sensitivity change                            |
| Tumble Test                     | Height: 1.0m                                                |
|                                 | Fixture weight: 150±10g                                     |
|                                 | Fixture's sound hole diameter is ≥0.8mm                     |
|                                 | Duration: 300 cycles                                        |
|                                 | Less than 1dB sensitivity change                            |
|                                 | Measured according to MIL-STD-883G, Method 3015.7,          |
| ESD Sensitivity                 | Human Body Model (HBM)                                      |
| ,                               | Identify ESD threshold levels indicating 3000V HBM passage. |
|                                 | Air pressure = 0.3MPa                                       |
|                                 | Distance = 3cm                                              |
| Air Pressure Test               | Time = 10sec                                                |
|                                 | Air discharge port diameter exceeds microphone's            |
|                                 | acoustic port diameter                                      |
|                                 | 10000G                                                      |
|                                 | Pulse width = 0.1ms                                         |
| Structure Shock Test            | X, Y, and Z axis                                            |
|                                 | Three times along each axis                                 |
|                                 | Sensitivity changes less than 1dB                           |

## Dimensions (Dimension are in mm.)

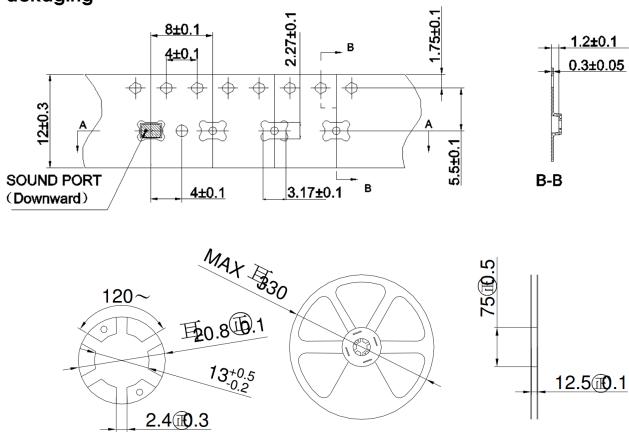


| Item              | Dimension | Tolerance(+/-) | Units |
|-------------------|-----------|----------------|-------|
| Length(L)         | 2.75      | 0.10           | mm    |
| Width(W)          | 1.85      | 0.10           | mm    |
| Height(H)         | 0.9       | 0.10           | mm    |
| Acoustic Port(AP) | Ø0.25     | 0.05           | mm    |

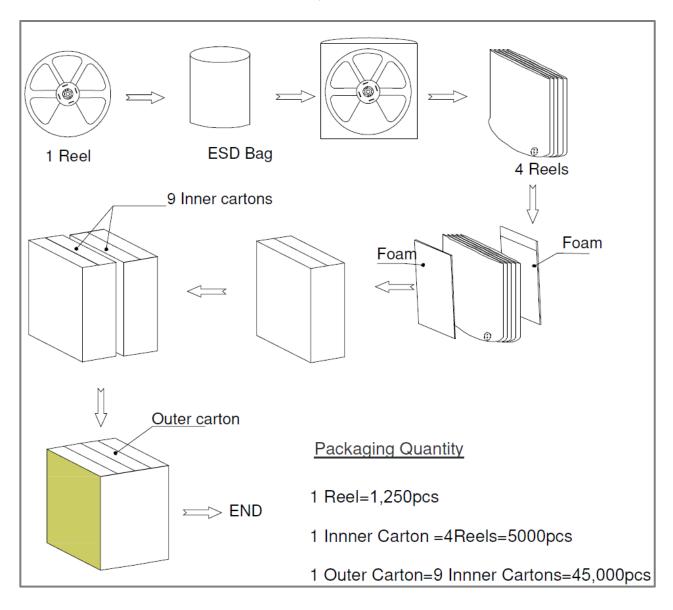

| Pin # | Pin Name | Type   | Description   |
|-------|----------|--------|---------------|
| 1     | $V_{DD}$ | Power  | Power Supply  |
| 2     | Output   | Signal | Output Signal |
| 3     | GND      | Ground | Ground        |

#### Notes:

All dimensions are in millimeter (mm).


Tolerance±0.15mm unless otherwise specified.

## **Suggested Land Pattern\***




<sup>\*</sup>This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

# **Packaging**



All Dimensions are in millimeter (mm).



#### **Specifications Revisions**

| opcomouncing Revisions |                           |            |
|------------------------|---------------------------|------------|
| Revision               | Description               | Date       |
| Α                      | Released from Engineering | 05-05-2023 |

#### Note:

- 1. Unless otherwise specified:
  - A. All dimensions are in millimeters.
  - B. Default tolerances are  $\pm 0.5$ mm and angles are  $\pm 3^{\circ}$ .
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS 2015/863/EU compliant.