

Data Sheet DMM-3526-2-B

Features:

The DMM-3526-2-B digital MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly. The digital data format is single-bit PDM.

- -26dBFS sensitivity
- 65dB Signal-to-Noise
- Digital PDM output
- Small 2.65mm x 3.50mm surface-mount package

Specifications ($f_{CLOCK} = 2.4MHz$, $V_{DD} = 1.8V$, unless otherwise specified.)

Parameter	Test Condition	Value	Unit	
	94dBSPL	-27 (min)		
Sensitivity	$f_{IN} = 1 \text{ kHz}$	-26 (typ)	dBFS	
	All operating modes	-25(max)		
Supply Voltage		1.8 (typ)	V_{DD}	
Supply Voltage Range		1.62 (min) 3.6 (max)	V_{DD}	
Supply Current	$V_{dd} = 1.8V$ $f_{SAMPLE} = 3.072MHz$	650 (typ) 1000 (max)	μΑ	
Signal-to-Noise Ratio	f_{IN} = 1kHz, 94dBSPL, A- weighted	65 (typ)	dB	
Frequency Range	See Frequency Response Curve for response limits	20 – 20k	Hz	
Total Harmonic Distortion	f _{IN} = 1 kHz, 94dBSPL	0.15 (typ) 0.5 (max)	%	
Acoustic Overload Point (AOP)	(1kHz, 10% THD)	120 (typ) 121 (max)	dB	
Power Supply Rejection	100mV_{PP} 217 Hz square wave on V_{DD} , A-weighted	-90 (typ)	dB	
Input-Referred Noise		3.5 (typ)	μV	

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

© 2023, PUI Audio Inc.

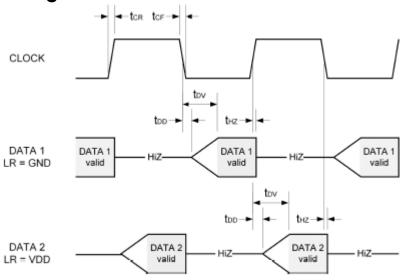
	94dBSPL	-5 (min)	o
Phase Response	50Hz < f _{IN} < 2000Hz	5 (max)	

Specifications ($f_{CLOCK} = 768kHz$, $V_{DD} = 1.8V$, unless otherwise specified.)

Parameter	Test Condition	Value	Unit	
	94dBSPL	-27 (min)		
Sensitivity	$f_{IN} = 1 \text{ kHz}$	-26 (typ)	dBFS	
	All operating modes	-25 (max)		
Supply Voltage		1.8 (typ)	V_{DD}	
Company Vallages Days		1.6 (min)	\/	
Supply Voltage Range		3.6 (max)	V_{DD}	
S	$V_{dd} = 1.8V$	350 (typ)	A	
Supply Current	f _{SAMPLE} = 768kHz	450 (max)	μA	
Signal-to-Noise Ratio	f_{IN} = 1kHz, 94dBSPL, A- weighted	63 (typ)	dB	
Frequency Range	See Frequency Response Curve for response limits	20 – 20k	Hz	
Total Harmonic Distortion	f _{IN} = 1kHz, 94dBSPL	0.17 (typ) 0.5 (max)	%	
Acoustic Overload Point (AOP)	(1kHz, 10% THD)	120 (typ) 121 (max)	dB	
Power Supply Rejection	100mV_{PP} 217 Hz square wave on V_{DD} , A-weighted	-89 (typ)	dB	

Physical Properties

Parameter	Condition	Value	Unit
Directivity		Omnidirectional	
Weight		0.03 (max)	Grams
Operating Temperature		-40 (min) 85 (max)	°C
Storage Temperature	Humidity < 75%	-40 (min) 100 (max)	°C
MSL (Moisture Sensitivity Level)*		Class 1	
Acceptable Soldering Methods		See page for reflow soldering information	
Environmental Compliances		RoHS/Halogen Free	


^{*}MSL level dependent on product remaining in sealed packaging until use

Operating Ratings

Parameter	Test Condition	Value	Unit
Power Supply Voltage (V _{DD})		1.62 (min)	V
Tower supply volidge (VDD)		3.6 (max)	V
	Sleep Mode	0 (min)	
		350 (max)	kHz
Clock Frequency Range		512 (min)	kHz
(fclock)	Lower Power Mode	768 (typ)	KIIZ
(TOLOGK)		850 (max)	
	Standard Mode	1.38 (min)	MHz
	oraniaara meae	3.3 (max)	741112
Clock Duty Cycle	Note 1	45 (min)	%
Clock Boty Cycle	1,616 1	55 (max)	
Input Logic High Level		0.65 • V _{DD} (min)	
		V _{DD} +0.3 (max)	V
 Input Logic Low Level		-0.3 (min)	v
Input Logic Lovy Lovei		0.35 • V _{DD} (max)	
Output Logic High Level		0.7 • V _{DD} (min)	V
Output Logic Low Level		0.3 • V _{DD} (max)	v
Output Logic Load		200 (max)	рF
Capacitance			Ρ'
Data Valid Time		20 (max)	
Wake-Up Time		20 (max)	ms
Time After Stable Clock to Achieve Specified Sensitivity	Sensitivity, ±0.2dB	20 (min)	ms
	Clock is off	1 (typ	
Supply Current	CIOCK IS OII	35 (max)	
	Standby	25 (typ)	μA
	Sidilaby	50 (max)	
	Data Output Pin		
Short Circuit Current	VDD = 1.2V	1 (min)	
	VDD - 1.2 V	13 (max)	mA
	VDD = 1.8V	1 (min)	
	VDD = 1.0V	20 (max)	

Note 1: For f_{CLOCK} £ 2.7MHz, the duty-cycle must be in the 45% to 55% range. For $f_{CLOCK} > 2.7$ MHz, the duty-cycle must be 48% - 52%.

Timing Characteristics

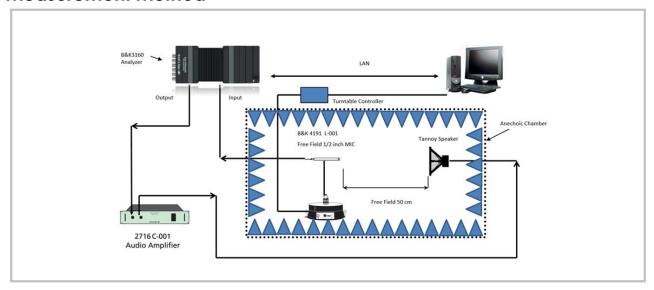
Parameter	Test Condition	Value	Unit
Clock Timing Characteristics			
Clock Duty Cycle (DC)	fclock ≤ 2.7MHz	45 (min) 55 (max)	%
Clock Duty Cycle (DCcLock)	f _{CLOCK} > 2.7MHz	48 (min) 52 (max)	%
Clock Rise Time (t _{CR})	10% to 90%	13 (max)	ns
Clock Fall Time (t _{CF})	90% to 10%	13 (max)	ns
Data Timing Characteristics			
Time Delay Between Clock Edge and Data Line Driven (tdd)	Clock Edge Magnitude = 50%V _{DD}	40 (min) 80 (max)	ns
Time Delay to Valid Data [Normal Mode] (t _{DV})	DV _{DD} Digital Interface: f _{CLOCK} = 768kHz, 2.0MHz, 3.072MHz, or 4.0MHz Internal 1.2V Digital Interface: f _{CLOCK} = 2.0MHz, 3.072MHz, or 4.0MHz	100 (max)	ns
Time Delay to High Impedance (t _{Hz})	DV _{DD} Digital Interface	5 (min) 30 (min)	ns
Time Delay to High Impedance [Internal 1.2V Mode] (†HZ_1V2IO)	Internal 1.2V Digital Interface	14 (min) 22 (min)	ns
Short Circuit Output Current		20 (max)	mA
Time to Sleep	f _{CLK} < 250kHz	10 (max)	ms
Time to Wake	f _{CLK} > 350kHz	15 (max)	ms
Time from Power Valid to Operation		50 (max)	ms
Time to Change Mode		10 (max)	ms
Time to Valid VDD	$V_{DD} \ge V_{DD_min}$	50 (max)	ms

This document contains data proprietary to PUI Audio Inc. Any use or reproduction, in any form, without prior written permission of PUI Audio Inc. is prohibited.

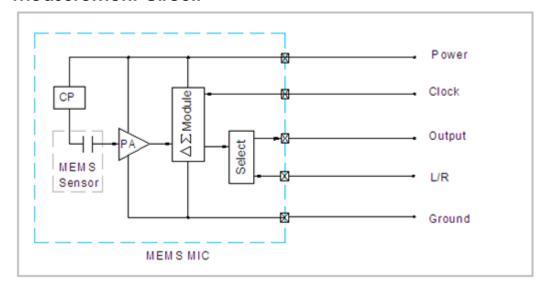
© 2023, PUI Audio Inc.

Power-On Time to Idle Data Pattern		4 (max)	ms
Startup Time (Note 2)	Sensitivity accuracy = ±0.5dB	20	ms
	Sensitivity accuracy = ±0.2dB	50	
Reset Time (Note 3)	Sensitivity accuracy = ±0.5dB	20	
	Sensitivity accuracy = ±0.2dB	50	
Mode Switch Time (Note 4)	Sensitivity accuracy = ±0.5dB	20	
	Sensitivity accuracy = ±0.2dB	50	

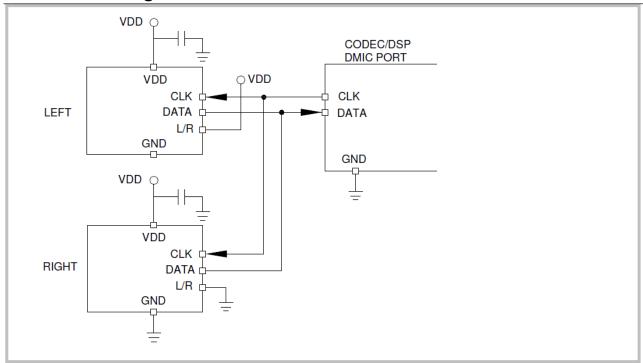
Note 2: Any mode after V_{DD} and CLOCK are applied.


Note 3: Any mode after V_{DD} = 0V for greater than 10ms; CLOCK remains on.

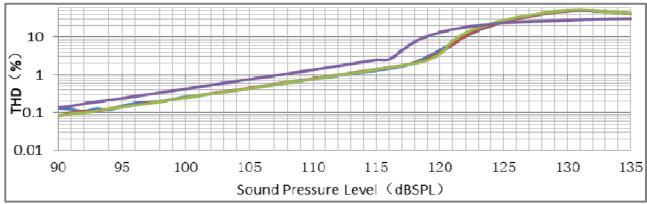
Note 4: Switching between any mode; $1.6V \le V_{DD} \le 3.6V$.

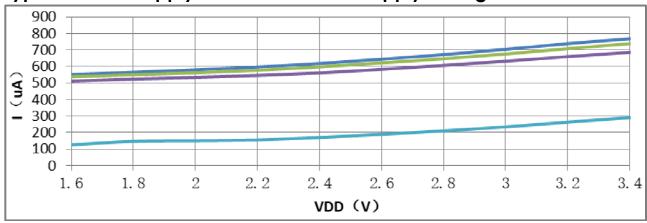

Absolute Maximum Ratings

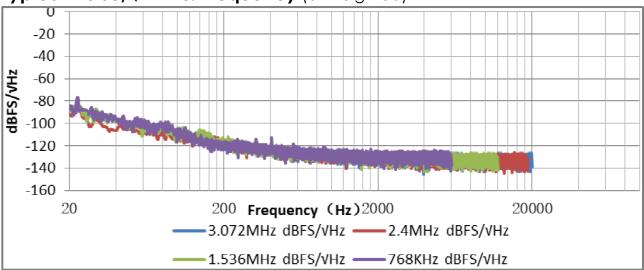
Parameter	Condition	Value	Unit	
Supply Voltage		3.6	V_{DC}	
Max Voltage on Any Pin		3.6	V_{DC}	
Max Sound Pressure Level		160	dB	
Max Mechanical Shock		10000	G	
Max Vibration			Pre-MIL-STD-883 Method 2007, Test Condition B	


Measurement Method

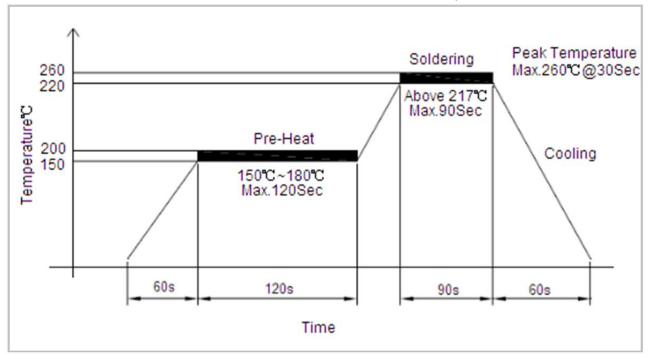
Measurement Circuit


Connection Diagram


Typical Frequency Response (Normalized to 0dB at 1kHz)


Typical THD vs. Sound Pressure Level

Typical Power Supply Current vs. Power Supply Voltage

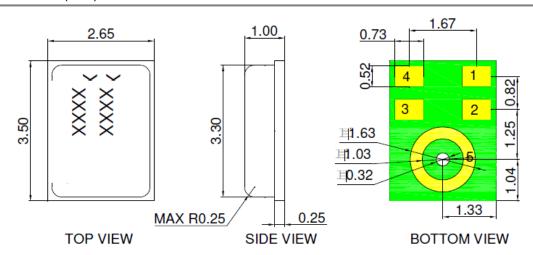


Typical Noise/ \sqrt{Hz} vs. Frequency (Unweighted)

Recommended Reflow Soldering Procedure (Recommended profile,

temperature ≤ 260°C, 30s maximum at peak temperature.)

Important notes to minimize device damage:

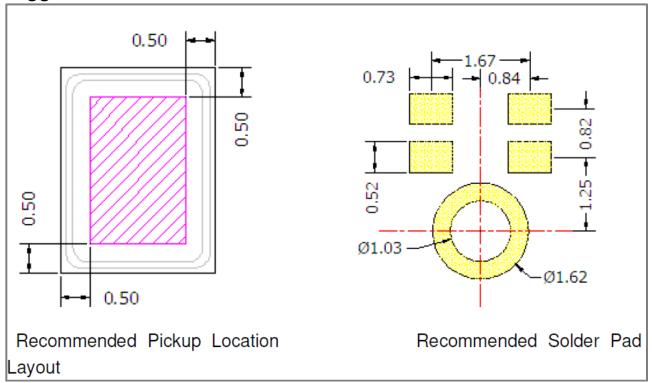

- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- 5. Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A noclean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. It is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.

Reliability Testing (Samples under test are acclimated at $T_A = 23\pm2^{\circ}C$, R.H. = $55\pm10\%$ for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is $\leq\pm3$ dB, unless otherwise specified.)

Type of Test	Test Specifications
	1000hrs at 105±3°C
High Temperature Storage Test	Two-hour recovery
	1000hrs at 105±3°C
High Temperature Operational Test	$V_{DD} = V_{DD} (max),$
	Four-hour recovery
Law Tarana ayah wa Chayana Tark	1000hrs at -40±3°C.
Low Temperature Storage Test	Two-hour recovery
	1000hrs at -40±3°
Low Temperature Operational Test	$V_{DD} = V_{DD}$ (max)
	Four-hour recovery
	Thirty cycles, each from cold to hot
Temperature Shock	Each cycle is thirty minutes at -40°C, thirty minutes at 125°C
	Five-minute transition
	Double-case method:
	15min at -40±3°C
Temperature-Cycle, Thermal Shock	Followed by
Test	15min at 125±3°C
	100 cycles
	Two-hour recovery
	1000hrs at 85±3°C and 85%R
High Humidity, High Temperature	$V_{DD} = V_{DD}$ (max)
Operating Test	Twelve-hour recovery
	No corrosion or defamation inside the microphone
	168hrs at 65±3°C and 95%RH
High Humidity, High Temperature	$V_{DD} = V_{DD}$ (max)
Operating Test	Twelve-hour recovery
	No corrosion or defamation inside the microphone
	One hour at 25°C precondition
Static Humidity	1000hrs at 85±3°C and 85%RH
	Dry at room ambient temperature
	Twelve minutes along the X, Y, and Z axis
	$f_{IN} = 20$ Hz to 2kHz
Vibration Test	20G peak acceleration
	Two-hour recovery
	Less than 1dB sensitivity change
	Half-sine shock pulses
Mechanical Shock	3000G±15%, 300µs
	Eighteen total shocks
	Height: 1.5m
Shock Test	Fixture weight: 150±10g
	Fixture's sound hole diameter is ≥0.8mm
	Reference surface is marble floor

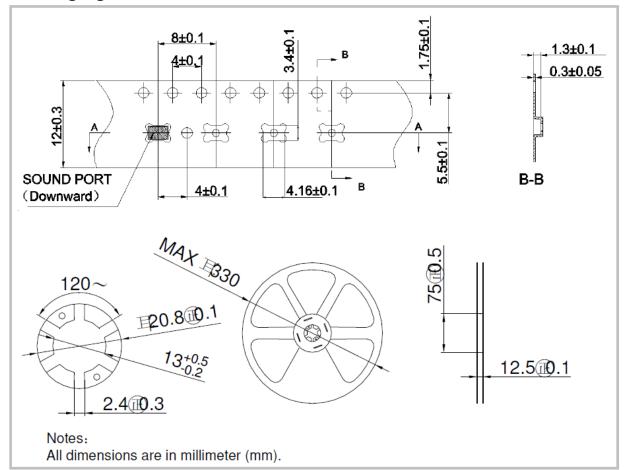
	Duration: four corners x four times; six faces x four times
	Less than 1dB sensitivity change
	Repeated three times in six directions (total drops is
	eighteen).
Drop Test	Dropped onto a steel surface from 1.5m height
	Inspect for mechanical damage
	Less than ±3dB sensitivity variation after each drop
	Random vibrations on three perpendicular axis
Dandon Vilorations	Four cycles, 20Hz to 2kHz
Random Vibrations	20G peak acceleration
	Thirty minutes per axis
	10000G
	Pulse width = 0.1ms
Structure Shock Test	X, Y, and Z axis
	Three times along each axis
	Sensitivity change less than 1dB
	Air pressure = 0.3MPa
	Distance = 3cm
Air Pressure Test	Time = 10sec
7 (11 1 1 0 3 3 0 1 0 1 0 3 1	Air discharge port diameter exceeds microphone's
	acoustic port diameter
	Samples are qualified with three 260±5°C reflow profile
	passes
Simulated Reflow (without solder)	Two hours of settling is required between each reflow
	profile test
	Measured according to MIL-STD-883G, Method 3015.7,
ESD Sensitivity	Human Body Model (HBM)
,	Identify ESD threshold levels indicating 3000V HBM passage.
Operational Life	Samples tested at 125°C for 168hrs at V _{DD(MAX)}

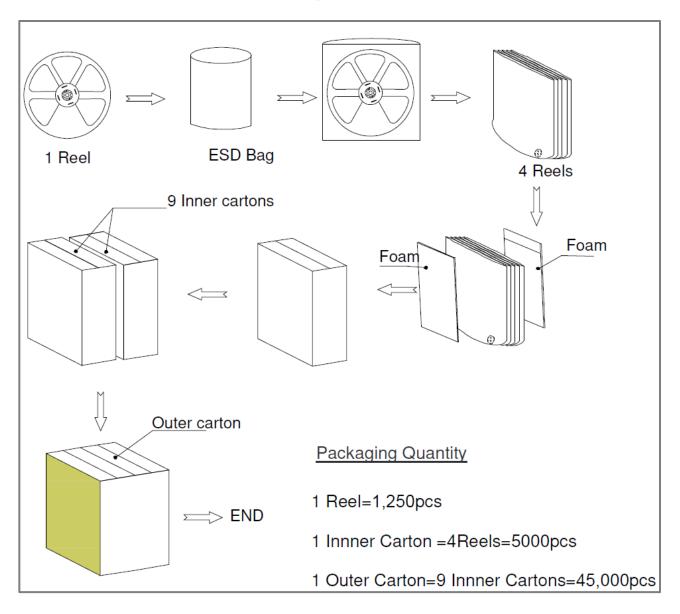
Dimensions (mm)



Laser Mark	Description
XXXX	Date Code
XXXX	Date Code

Item	Dimension	Tolerance(+/-)	Units
Length(L)	3.50	0.10	mm
Width(W)	2.65	0.10	mm
Height(H)	1.00	0.10	mm
Acoustic Port(AP)	Ø0.32	0.05	mm


Pin #	Pin Name	Type	Description
1	Output	Signal	Output Signal
2	L/R	L/R Channel	Channel select
3	CLK	Clock	Clock input
4	V_{DD}	Power	Power Supply
5	GND	Ground	Ground


Suggested Land Pattern*

^{*}This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.

Packaging

Specifications Revisions

Revision	Description	
Α	Preliminary Release from Engineering	05-04-2023

Note:

- 1. Unless otherwise specified:
 - A. All dimensions are in millimeters.
 - B. Default tolerances are ± 0.5 mm and angles are $\pm 3^{\circ}$.
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS 2015/863/EU compliant.