



## Data Sheet

DMM-3526-3-B

#### Features:

The DMM-3526-3-B digital MEMS microphone features a specialized preamplification ASIC that provides high sensitivity and high SNR output from a capacitive audio sensor. It's packaged for surface mounting and high temperature reflow assembly. The digital data format is single-bit PDM.

- -26dBFS sensitivity
- 65dB Signal-to-Noise
- Digital PDM output
- Small 2.65mm x 3.5mm surface-mount package

| Parameter                 | Test Condition                            | Value      | Unit            |
|---------------------------|-------------------------------------------|------------|-----------------|
|                           | 94dBSPL                                   | -27 (min)  |                 |
| Sensitivity               | $f_{IN} = 1 \text{ kHz}$                  | -26 (typ)  | dBFS            |
|                           | All operating modes                       | -25 (max)  |                 |
| Supply Voltage            |                                           | 1.8 (typ)  | V <sub>DD</sub> |
|                           |                                           | 1.62 (min) | V               |
| Supply Voltage Range      |                                           | 3.6 (max)  | Vdd             |
|                           | $V_{dd} = 1.8V$                           | 550 (typ)  |                 |
| Supply Current            | f <sub>SAMPLE</sub> = 3.072MHz            | 650 (max)  | μA              |
|                           | $f_{IN} = 1 \text{kHz}$                   |            |                 |
| Signal-to-Noise Ratio     | 94dBSPL                                   | 65 (typ)   | dB              |
|                           | A-weighted                                |            |                 |
| Fraguaday Banaa           | See Frequency Response Curve for          | 100 – 10k  | Hz              |
| Frequency Range           | response limits                           | (typ)      | ПΖ              |
| Total Harmonic Distortion | $f_{IN} = 1 \text{ kHz}$                  | 0.5 (max)  | %               |
|                           | 94dBSPL                                   | 0.5 (Max)  | /0              |
| Acoustic Overload Point   | $f_{IN} = 1 kHz$                          | 121 (typ)  | dB              |
| (AOP)                     | 10% THD                                   |            | GD              |
| Device Suraby Deie etien  | 100mV <sub>PP</sub> 217 Hz square wave on |            |                 |
| Power Supply Rejection    | V <sub>DD</sub>                           | -88 (typ)  |                 |
|                           | A-weighted                                |            | dB              |
| Phase Response            | 94dBSPL                                   | -5 (min)   | o               |
| Пазе кезропве             | 50Hz < fIN < 2000Hz                       | 5 (max)    |                 |

#### **Specifications** (f<sub>CLOCK</sub> = 2.4MHz, V<sub>DD</sub> = 1.8V, unless otherwise specified.)

| Parameter                 | Test Condition                            | Value     | Unit            |
|---------------------------|-------------------------------------------|-----------|-----------------|
|                           | 94dBSPL                                   | -27 (min) |                 |
| Sensitivity               | $f_{IN} = 1 \text{ kHz}$                  | -26 (typ) | dBFS            |
|                           | All operating modes                       | -25 (max) |                 |
| Supply Voltage            |                                           | 1.8 (typ) | V <sub>DD</sub> |
| Supply Voltage Range      |                                           | 1.6 (min) | V <sub>DD</sub> |
|                           |                                           | 3.6 (max) | • 00            |
| Supply Current            | V <sub>dd</sub> = 1.8V                    | 150 (typ) |                 |
| Supply Current            | f <sub>SAMPLE</sub> = 768kHz              | 350 (max) | μA              |
|                           | $f_{IN} = 1 \text{kHz}$                   |           |                 |
| Signal-to-Noise Ratio     | 94dBSPL                                   | 64 (typ)  | dB              |
|                           | A-weighted                                |           |                 |
| Frequency Range           | See Frequency Response Curve              | 100 – 10k | Hz              |
|                           | for response limits                       | (typ)     | 112             |
| Total Harmonic Distortion | $f_{IN} = 1 \text{kHz}$                   | 0.5 (max) | %               |
|                           | 94dBSPL                                   |           | 70              |
| Acoustic Overload Point   | $f_{IN} = 1 \text{kHz}$                   | 121 (typ) | dB              |
| (AOP)                     | 10% THD                                   |           | ЧD              |
|                           | 100mV <sub>PP</sub> 217 Hz square wave on |           |                 |
| Power Supply Rejection    | V <sub>DD</sub>                           | -90 (typ) | dB              |
|                           | A-weighted                                |           |                 |

**Specifications** ( $f_{CLOCK} = 768$ kHz,  $V_{DD} = 1.8V$ , unless otherwise specified.)

### **Physical Properties**

| Parameter                            | Condition | Value                                                | Unit            |  |
|--------------------------------------|-----------|------------------------------------------------------|-----------------|--|
| Directivity                          |           | Omnidire                                             | Omnidirectional |  |
| Weight                               |           | 0.03 (max)                                           | Grams           |  |
| Operating Temperature                |           | -40 (min)<br>85 (max)                                | °C              |  |
| Storage Temperature                  |           | -40 (min)<br>100 (max)                               | °C              |  |
| MSL (Moisture Sensitivity<br>Level)* |           | Class 1                                              |                 |  |
| Acceptable Soldering<br>Methods      |           | See page 3<br>for reflow<br>soldering<br>information |                 |  |
| Environmental Compliances            |           | RoHS/REACH/<br>Halogen Free                          |                 |  |

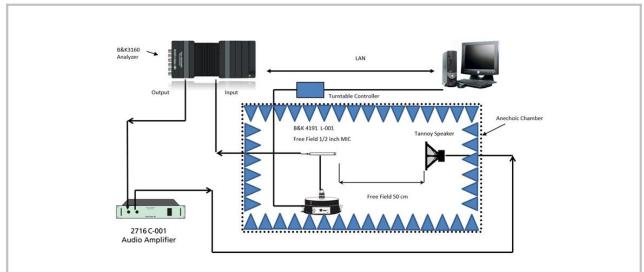
\*MSL level dependent on product remaining in sealed packaging until use

# **Operating Ratings**

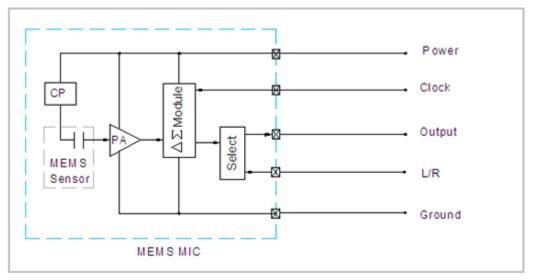
| Parameter                        | Test Condition   | Value                      | Unit |
|----------------------------------|------------------|----------------------------|------|
|                                  |                  | 1.62 (min)                 |      |
| Power Supply Voltage (VDD)       |                  | 1.8 (typ)                  | V    |
|                                  |                  | 3.6 (max)                  |      |
|                                  | Sleep Mode       | 310 (max)                  | kHz  |
|                                  |                  | 380 (min)                  |      |
| Clock Frequency Range            | Lower Power Mode | 768 (typ)                  | kHz  |
| (fclock)                         |                  | 980 (max)                  |      |
|                                  |                  | 1.17 (min)                 |      |
|                                  | Standard Mode    | 3.072 (typ)                | MHz  |
|                                  |                  | 3.1 (max)                  |      |
| Clock Duty Cycle                 |                  | 40 (min)                   | %    |
| Clock Duty Cycle                 |                  | 60 (max)                   | 70   |
| Input Logic Lligh Lovel          |                  | 0.7•V <sub>DD</sub> (min)  |      |
| Input Logic High Level           |                  | V <sub>DD</sub> +0.3 (max) | \ /  |
|                                  |                  | -0.3 (min)                 | V    |
| Input Logic Low Level            |                  | 0.3•V <sub>DD</sub> (max)  |      |
| Output Logic High Level          |                  | 0.7•V <sub>DD</sub> (min)  | V    |
| Output Logic Low Level           |                  | 0.3•V <sub>DD</sub> (max)  | V    |
| Output Logic Load<br>Capacitance |                  | 200 (max)                  | рF   |
| Power On                         |                  | 20 (max)                   | ms   |
| Startup Time                     |                  | 20 (max)                   | ms   |
|                                  |                  | 10 (min)                   |      |
| Wake-up Time                     |                  | 20 (max)                   | ms   |
|                                  |                  | 1 (typ                     |      |
|                                  | Clock is off     | 10 (max)                   |      |
| Supply Current                   |                  | 25 (typ)                   | μA   |
|                                  | Standby          | 50 (max)                   |      |
|                                  | Data Output Pin  |                            |      |
|                                  | ·                | 1 (min)                    |      |
| Short Circuit Current            | VDD = 1.2V       | 13 (max)                   | mA   |
|                                  | VDD = 1.8V       | 1 (min)                    |      |
|                                  |                  | 20 (max)                   |      |

Note 1: For  $f_{CLOCK} \le 2.7$ MHz, the duty-cycle must be in the 45% to 55% range. For  $f_{CLOCK} > 2.7$ MHz, the duty-cycle must be 48% - 52%.

# **Timing Characteristics**


| Parameter                                                                                                | Test Condition                                                                                                                                                                                | Value                | Unit     |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| <b>Clock Timing Characteristics</b>                                                                      |                                                                                                                                                                                               |                      |          |
| Clock Duty Cycle (DCclock)                                                                               |                                                                                                                                                                                               | 40 (min)<br>60 (max) | %        |
| Clock Rise Time († <sub>CR</sub> )                                                                       | 10% to 90%                                                                                                                                                                                    | 13 (max)             | ns       |
| Clock Fall Time (tcF)                                                                                    | 90% to 10%                                                                                                                                                                                    | 13 (max)             | ns       |
| Time Delay Between Clock<br>Edge and Data Line Driven<br>[DV <sub>DD</sub> Mode] († <sub>DD_DVDD</sub> ) | DV <sub>DD</sub> Digital Interface                                                                                                                                                            | 30 (min)             | ns       |
| Time Delay to Valid Data<br>[Normal Mode] (t <sub>DV_NM</sub> )                                          | $DV_{DD}$ Digital Interface: $f_{CLOCK} =$<br>768kHz, 2.0MHz, 3.072MHz, or<br>4.0MHz<br>Internal 1.2V Digital Interface:<br>$f_{CLOCK} =$ 2.0MHz, 3.072MHz, or<br>4.0MHz                      | 100 (max)            | ns       |
| Data Timing Characteristics                                                                              |                                                                                                                                                                                               |                      |          |
| Time Delay Between Clock<br>Edge and Data Line Driven<br>(tod)                                           | Clock Edge Magnitude =<br>50%V <sub>DD</sub>                                                                                                                                                  | 40 (min)<br>80 (max) | ns       |
| Time Delay to Valid Data<br>[Normal Mode] (t <sub>DV</sub> )                                             | DV <sub>DD</sub> Digital Interface: f <sub>CLOCK</sub> =<br>768kHz, 2.0MHz, 3.072MHz, or<br>4.0MHz<br>Internal 1.2V Digital Interface:<br>f <sub>CLOCK</sub> = 2.0MHz, 3.072MHz, or<br>4.0MHz | 100 (max)            | ns       |
| Time Delay to High<br>Impedance (t <sub>Hz</sub> )                                                       | DV <sub>DD</sub> Digital Interface                                                                                                                                                            | 5 (min)<br>30 (min)  | ns       |
| Time to Sleep                                                                                            | f <sub>CLK</sub> < 250kHz                                                                                                                                                                     | 10 (max)             | ms       |
| Time to Wake                                                                                             | f <sub>CLK</sub> > 350kHz                                                                                                                                                                     | 15 (max)             | ms       |
| Time from Power Valid to<br>Operation                                                                    |                                                                                                                                                                                               | 50 (max)             | ms       |
| Time to Change Mode                                                                                      |                                                                                                                                                                                               | 10 (max)             | ms       |
| Time to Valid $V_{DD}$                                                                                   | $V_{DD} \ge V_{DD\_min}$                                                                                                                                                                      | 50 (max)             | ms       |
| Power-On Time to Idle Data<br>Pattern                                                                    |                                                                                                                                                                                               | 4 (max)              | ms       |
| Power-On Time to Valid<br>Data Pattern                                                                   |                                                                                                                                                                                               | 21.5 (max)           | ms       |
| Startup Time (Note 2)                                                                                    | Sensitivity accuracy = ±0.5dB                                                                                                                                                                 | 21.5 (min)           |          |
|                                                                                                          | Sensitivity accuracy = ±0.2dB                                                                                                                                                                 | 50 (max)             |          |
| Mode Switch Time (Note 3)                                                                                | Sensitivity accuracy = ±0.5dB                                                                                                                                                                 | 2 (min)              | <b>m</b> |
|                                                                                                          | Sensitivity accuracy = ±0.2dB                                                                                                                                                                 | 20 (max)             | ms       |
| Mode Switch Time (Note 4)                                                                                | Sensitivity accuracy = ±0.5dB                                                                                                                                                                 | 21.5 (min)           |          |
|                                                                                                          | Sensitivity accuracy = ±0.2dB                                                                                                                                                                 | 50 (max)             |          |

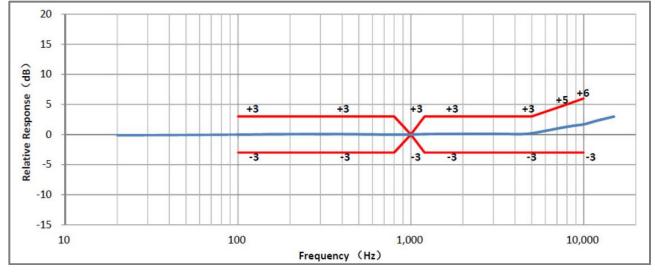
Note 2: Any mode after V<sub>DD</sub> and CLOCK are applied. Note 3: Time to switch to low-power mode  $f_{CLOCK}$  range of 380kHz to 980kHz. Note 4: Switching between any mode;  $1.6V \le V_{DD} \le 3.6V$ .

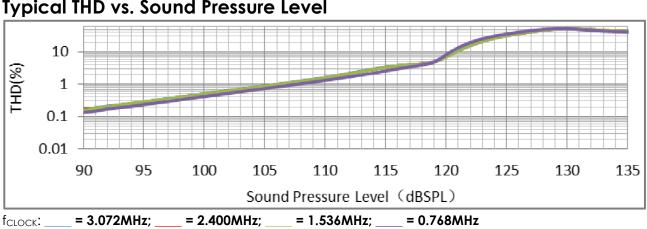

### **Absolute Maximum Ratings**

| Parameter                         | Condition | Value                 | Unit                                             |  |
|-----------------------------------|-----------|-----------------------|--------------------------------------------------|--|
| Supply Voltage (V <sub>DD</sub> ) |           | 3.6 (max)             | $V_{\text{DC}}$                                  |  |
| Voltage on Any Pin                |           | -0.3 (min)            | V <sub>DC</sub>                                  |  |
|                                   |           | V <sub>DD</sub> + 0.3 |                                                  |  |
|                                   |           | (max)                 |                                                  |  |
| Max Sound Pressure Level          |           | 160                   | dB                                               |  |
| Max Mechanical Shock              |           | 10000                 | G                                                |  |
| Max Vibration                     |           |                       | Pre-MIL-STD-883 Method<br>2007, Test Condition B |  |

### **Measurement Method**

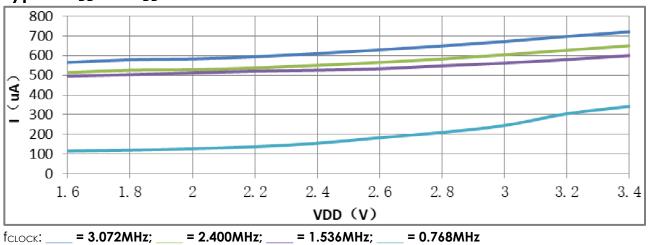


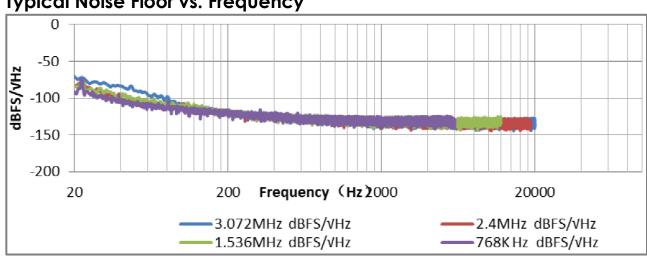

## **Measurement Circuit**




# **Connection Diagram**



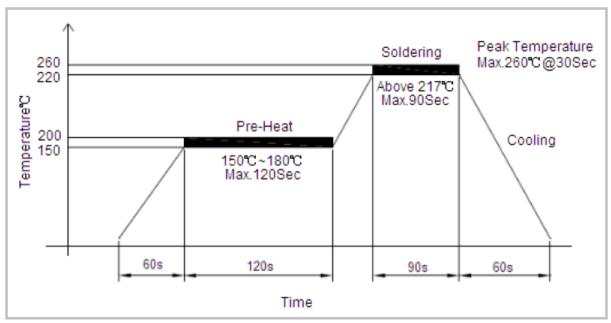

# Typical Frequency Response (Normalized to OdB at 1kHz)






# Typical THD vs. Sound Pressure Level








## Typical Noise Floor vs. Frequency

### Recommended Reflow Soldering Procedure (Recommended profile,

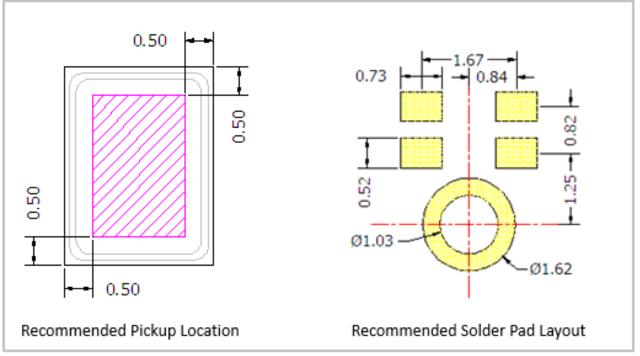
temperature ≤ 260°C, 30s maximum at peak temperature)



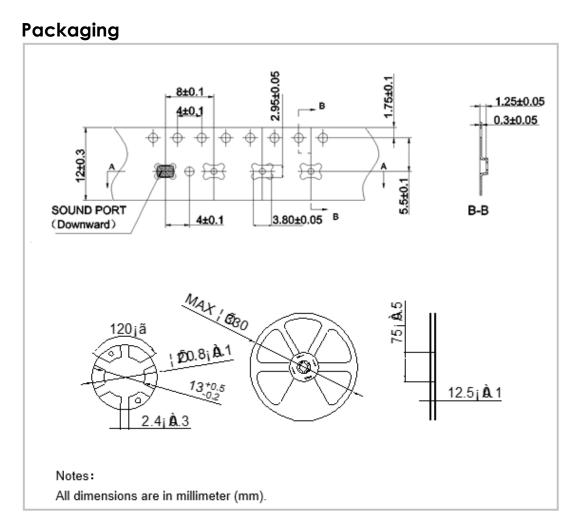

Important notes to minimize device damage

- 1. Do not handle the microphone with pick-and-place vacuum tools that could contact the microphone acoustic port hole.
- 2. Never expose the microphone's acoustic port hole to vacuum. Such exposure can damage or destroy the MEMS element.
- 3. Never allow air to blow air into the microphone acoustic port hole. The port hole must be sealed to prevent particle contamination if a blown air-cleaning process is used,
- 4. A clean room environment is recommended for PCB assembly to avoid microphone contamination.
- 5. Do not use blown air or ultrasonic cleaning procedures on MEMS Microphones. A no-clean paste is recommended for the assembly, avoiding subsequent cleaning steps. cleaning substances can severely damage the microphone MEMS element.
- 6. it is recommended to cover the sound port with protective tape during PCB sawing or system assembly. This prevents blocking or partially blocking the acoustic port hole during PCB assembly.
- 7. Do not use excessive force to place the microphone on the PCB. Use industry standard pick and place tools to limit the mechanical force exerted on the package.

**Reliability Testing** (Samples under test are acclimated at  $T_A = 23\pm2^{\circ}$ C, R.H. = 55±10% for two hours. After each test completes and corresponding recovery time (if applicable) elapses, any measured sensitivity change is  $\leq$ ±3dB, unless otherwise specified)


| Type of Test                                      | Test Specifications                                                                                                                                                                                                           |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Temperature Storage Test                     | 1000hrs at 105±3°C, two-hour recovery                                                                                                                                                                                         |
| High Temperature Operational Test                 | 1000hrs at 105±3°C, $V_{DD} = V_{DD}$ (max), four-<br>hour recovery                                                                                                                                                           |
| Low Temperature Storage Test                      | 1000hrs at -40±3°C, two-hour recovery                                                                                                                                                                                         |
| Low Temperature Operational Test                  | 1000hrs at -40±3°C, V <sub>DD</sub> = V <sub>DD</sub> (max), four-<br>hour recovery                                                                                                                                           |
| High Humidity, High Temperature<br>Operating Test | 1000hrs at $85\pm3^{\circ}$ C and $85\%$ RH, $V_{DD} = V_{DD}$<br>(max), twelve-hour recovery, no corrosion<br>or defamation inside the microphone                                                                            |
| High Humidity, High Temperature<br>Operating Test | 168hrs at 65±3°C and 95%RH, V <sub>DD</sub> = V <sub>DD</sub><br>(max), twelve-hour recovery, no corrosion<br>or defamation inside the microphone                                                                             |
| Temperature-Cycle Testing                         | Double-case method:<br>15min at -40±3°C<br>Followed by<br>15min at 125±3°C<br>100 cycles, two-hour recovery                                                                                                                   |
| Vibration Test                                    | Twelve minutes along the x, y, and z axis<br>f <sub>IN</sub> = 20Hz to 2kHz<br>20G peak acceleration<br>Two-hour recovery<br>Less than 1dB sensitivity change                                                                 |
| Shock Test                                        | 10000g, 0.1ms pulse width<br>3 times each along X/Y/Z axes<br>Less than 1dB sensitivity change                                                                                                                                |
| Drop Test                                         | Height: 1.5m<br>Fixture weight: 150±10g<br>Fixture's sound hole diameter is ≥0.8mm<br>Reference surface is marble floor<br>Duration: four corners x four times; six faces<br>x four times<br>Less than 1dB sensitivity change |

#### Dimensions (Dimension are in mm.)




Tolerance±0.15mm unless otherwise specified.

# **Suggested Land Pattern\***



\*This land pattern is advisory only and its use or adaptation is entirely voluntary. PUI Audio disclaims all liability of any kind associated with the use, application, or adaptation of this land pattern.



101 ത ESD Bag 1 Reel 4 Reels 9 Inner cartons Foam Foam < Outer carton Packaging Quantity 1 Reel=1,250pcs END 1 Innner Carton =4Reels=5000pcs 1 Outer Carton=9 Innner Cartons=45,000pcs

| Specifications | Revisions |
|----------------|-----------|
|                |           |

| Revision | Description               | Date     |
|----------|---------------------------|----------|
| A        | Released from Engineering | 5/9/2023 |

Note:

- 1. Unless otherwise specified:
  - A. All dimensions are in millimeters.
  - B. Default tolerances are  $\pm 0.5$ mm and angles are  $\pm 3^{\circ}$ .
- 2. Specifications subject to change or withdrawal without notice.
- 3. This part is ROHS 2015/863/EU compliant.